SUMMARY

- 1. An $m \times n$ matrix is an ordered rectangular array of numbers containing m rows and n columns.
- 2. An $m \times 1$ matrix is a column vector with *m* components, and a $1 \times n$ matrix is a row vector with *n* components.
- 3. The product $A\mathbf{b}$ of an $m \times n$ matrix A and a column vector \mathbf{b} with components b_1, b_2, \ldots, b_n is the column vector equal to the linear combination of the column vectors of A where the scalar coefficient of the *j*th column vector of A is b_i .
- 4. The product AB of an $m \times n$ matrix A and an $n \times s$ matrix B is the $m \times s$ matrix C whose *j*th column is A times the *j*th column of B. The entry c_{ij} in the *i*th row and *j*th column of C is the dot product of the *i*th row vector of A and the *j*th column vector of B. In general, $AB \neq BA$.
- 5. If $A = [a_{ij}]$ and $B = [b_{ij}]$ are matrices of the same size, then A + B is the matrix of that size with entry $a_{ij} + b_{ij}$ in the *i*th row and *j*th column.
- 6. For any matrix A and scalar r, the matrix rA is found by multiplying each entry in A by r.
- 7. The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^T , which has as its kth row vector the kth column vector of A.
- 8. Properties of the matrix operations are given in boxed displays on page 45.

EXERCISES

In Exerciscs 1-16, let

$$A = \begin{bmatrix} -2 & 1 & 3 \\ 4 & 0 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 1 & -2 \\ 5 & -1 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & -1 \\ 0 & 6 \\ -3 & 2 \end{bmatrix}, \quad and \quad D = \begin{bmatrix} -4 & 2 \\ 3 & 5 \\ -1 & -3 \end{bmatrix}.$$

Compute the indicated quantity, if it is defined.

1. 3A	9. (2A)(5C)
2. 0 <i>B</i>	10. (5 <i>D</i>)(4 <i>B</i>)
3. $A + B$	11. .4 ²
4. <i>B</i> + <i>C</i>	12. $(AC)^2$
5. $C - D$	13. $(2A - B)D$
6. $4A - 2B$	14. ADB
7. AB	15. $(A^T)A$
8. $(CD)^{T}$	16. BC and CB

17. Let

 $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$ **a.** Find A^2 . **b.** Find A^7 . **18.** Let $A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}.$ **a.** Find A^2 . **b.** Find A^7 .

47

19. Consider the row and column vectors

 $\mathbf{x} = [-2, 3, -1] \text{ and } \mathbf{y} = \begin{bmatrix} 4\\-1\\3\end{bmatrix}.$

Compute the matrix products xy and yx.

20: Fill in the missing entries in the 4×4 matrix

1	-1		5 8
	4		8
2	-7	-1	
_		6	3

so that the matrix is symmetric.

- 21. Mark each of the following True or False. The statements involve matrices A, B, and C that are assumed to have appropriate size.
- $_$ **a.** If A = B, then AC = BC.
- $_$ **b.** If AC = BC, then A = B.
- c. If AB = O, then A = O or B = O.
- **____ d.** If A + C = B + C, then A = B.
- ____ e. If $A^2 = I$, then $A = \pm I$.
- f. If $B = A^2$ and if A is $n \times n$ and symmetric, then $b_{ii} \ge 0$ for i = 1, 2, ..., n.
- ____ g. If AB = C and if two of the matrices are square, then so is the third.
- ____ h. If AB = C and if C is a column vector, then so is B.
- i. If $A^2 = I$, then $A^n = I$ for all integers $n \ge 2$.
- \dots j. If $A^2 = I$, then $A^n = I$ for all even integers $n \ge 2$.
- a. Prove that, if A is a matrix and x is a row vector, then xA (if defined) is again a row vector.
 - b. Prove that, if A is a matrix and y is a column vector, then Ay (if defined) is again a column vector.
- 23. Let A be an $m \times n$ matrix and let b and c be column vectors with n components. Express the dot product $(Ab) \cdot (Ac)$ as a product of matrices.
- 24. The product Ab of a matrix and a column vector is equal to a linear combination of columns of A where the scalar coefficient of the *j*th column of A is b_j . In a similar fashion, describe the product cA of a row

vector c and a matrix A as a linear combination of vectors. [HINT: Consider $((cA)^T)^T$.]

In Exercises 25–34, prove that the given relation holds for all vectors, matrices, and scalars for which the expressions are defined.

25. A + B = B + A26. (A + B) + C = A + (B + C)27. (r + s)A = rA + sA28. (rs)A = r(sA)29. A(B + C) = AB + AC30. $(A^T)^T = A$ 31. $(A + B)^T = A^T + B^T$ 32. $(AB)^T = B^TA^T$ 33. (AB)C = A(BC)

- 34. (rA)B = A(rB) = r(AB)
- 35. If B is an $m \times n$ matrix and if $B = A^T$, find the size of
 - **a.** A,
 - b. AA^2
 - c. $A^T A$.
- 36. Let v and w be column vectors in ℝⁿ. What is the size of vw⁷? What relationships hold between vw⁷ and wv⁷?
- 37. The Hilbert matrix H_n is the $n \times n$ matrix $[h_{ij}]$, where $h_{ij} = 1/(i + j 1)$. Prove that the matrix H_n is symmetric.
- 38. Prove that, if A is a square matrix, then the matrix $A + A^{T}$ is symmetric.
- **39.** Prove that, if A is a matrix, then the matrix AA^{T} is symmetric.
- 40. a. Prove that, if A is a square matrix, then $(A^2)^T = (A^T)^2$ and $(A^3)^T = (A^T)^3$. [HINT: Don't try to show that the matrices have equal entries; instead use Exercise 32.]
 - b. State the generalization of part (a), and give a proof using mathematical induction (see Appendix A).
- 41. a. Let A be an m × n matrix, and let e_j be the n × 1 column vector whose jth component is 1 and whose other components are 0. Show that Ae_j is the jth column vector of A.

48 CHAPTER 1 VECTORS, MATRICES, AND LINEAR SYSTEMS

- **b.** Let A and B be matrices of the same size.
 - i. Prove that, if Ax = 0 (the zero vector) for all x, then A = O, the zero matrix. [HINT: Use part (a).]
 - ii. Prove that, if Ax = Bx for all x, then A = B. [HINT: Consider A B.]
- 42. Let A and \bar{B} be square matrices. Is

$$(A + B)^2 = A^2 + 2AB + B^2?$$

If so, prove it; if not, give a counterexample and state under what conditions the equation is true.

43. Let A and B be square matrices. Is

$$(A + B)(A - B) = A^2 - B^2?$$

If so, prove it; if not, give a counterexample and state under what conditions the equation is true.

44. An $n \times n$ matrix C is skew symmetric if $C^{T} = -C$. Prove that every square matrix A can be written *uniquely* as A = B + C where B is symmetric and C is skew symmetric.

Matrix A commutes with matrix B if AB = BA.

45. Find all values of r for which

$\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$		$[1 \ 0 \ 1]$
0 1 0	commutes with	0 1 0
0 0 r		$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$

46. Find all values of r for which

$[2 \ 0 \ 0]$		[1	0	1
0 r 0	commutes with	0	1	0.
0 0 2		1	0	1

The software LINTEK includes a routine, MATCOMP, that performs the matrix operations described in this section. Let

<i>A</i> =	4	6	0	1	-9
	2	11	5	2	-5
	-1	2	-4	5	7
	0	12	-8	4	3
	10	4	6	2	-5
		4	0	2	-2]

and

0	5 -1 13	6 12 -15	-11 -2 5 7
6	-8	0	-5

Use MATCOMP in LINTEK to enter and store these matrices, and then compute the matrices in Exercises 47-54, if they are defined. Write down to hand in, if requested, the entry in the 3rd row, 4th column of the matrix.

47.	$A^4 + A$	50.	BA^2	53.	$(2A)^3 - A^5$	
48.	A^2B	51.	$B^{T}(2A)$	54.	$(A^T)^5$	
49.	$A^{3}(A^{T})^{2}$	52.	$AB(AB)^T$			

MATLAB

To enter a matrix in MATLAB, start with a left bracket [and then type the entries across the rows, separating the entries by spaces and separating the rows by semicolons. Conclude with a right bracket]. To illustrate, we would enter the matrix

$$A = \begin{bmatrix} -1 & 5\\ 13 & -4\\ 7 & 0 \end{bmatrix} \text{ as } \mathbf{A} = \begin{bmatrix} -1 & 5; & 13 & -4; & 7 & 0 \end{bmatrix}$$

and MATLAB would then print it for us to proofread. Recall that to avoid having data printed again on the screen, we type a semicolon at the end of the data before pressing the Enter key. Thus if we enter

A = [-15; 13-4; 70];