Section 1.2 the Norm and the Dot Product

40. T T F F T F T F F F

44. We know that \vec{w} is perpendicular to both \vec{u} and \vec{v} , so $\vec{w} \cdot \vec{u} = 0$ and $\vec{w} \cdot \vec{v} = 0$. Then

$$\vec{w} \cdot (r\vec{u} + s\vec{v}) = \vec{w} \cdot (r\vec{u}) + \vec{w} \cdot (s\vec{v})$$
$$= r(\vec{w} \cdot \vec{u}) + s(\vec{w} \cdot \vec{v})$$
$$= r(0) + s(0) = 0$$

Therefore \vec{w} is perpendicular to $r\vec{u} + s\vec{v}$

46. By Theorem 1.2 (2), we know that following two equalities are the same.

$$\|\frac{1}{2}\vec{v} + \vec{w}\| = \|\frac{1}{2}\vec{v} - \vec{w}\|$$
 if and only if $\|\vec{v} + \vec{w}\| = \|\vec{v} - \vec{w}\|$

Since $\|\vec{v}\|^2 = \vec{v} \cdot \vec{v}$, we have

$$\|\vec{v} + \vec{w}\|^2 = (\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w}) = \vec{v} \cdot \vec{v} + 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w}$$
$$\|\vec{v} - \vec{w}\|^2 = (\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}) = \vec{v} \cdot \vec{v} - 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w}$$

From the figure 1.30, we got $\vec{v} \perp \vec{w}$, that means $\vec{v} \cdot \vec{w} = 0$. Hence,

$$\|\vec{v} + \vec{w}\|^2 = \vec{v} \cdot \vec{v} + \vec{w} \cdot \vec{w} = \|\vec{v} - \vec{w}\|^2$$

By Theorem 1.2 (1), the norm of a vector will always be positive. Therefore,

$$\|\vec{v} + \vec{w}\| = \|\vec{v} - \vec{w}\|$$