Section 1.3 Matrices and Their Algebra

32. The $(i, j)^{th}$ entry of $(AB)^T$ is the $(j, i)^{th}$ entry in AB, which is

 $(j^{th} \text{ row of } A) \cdot (i^{th} \text{ column of } B)$ = $(i^{th} \text{ column of } B) \cdot (j^{th} \text{ row of } A)$ = $(i^{th} \text{ row of } B^T) \cdot (j^{th} \text{ column of } A^T)$

which is the $(i, j)^{th}$ entry of $B^T A^T$. Since $(AB)^T$ and $B^T A^T$ have the same size, they are equal.

43.

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
$$(A+B)(A-B) = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}, A^2 - B^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

Since $(A+B)(A-B) = (A^2-B^2)+(BA-AB)$, we know that $(A+B)(A-B) = (A^2-B^2)$ only if BA - AB = 0. Therefore, the state holds only under the conditions that A, B are commutative.

p.s. You can using https://octave-online.net to check your example as below:

🕉 Octa	veOnline	
Vars [2x2] A [2x2] B [2x2] ans	<pre>octave:1> A=[1 1;0 1] A =</pre>	MENU
	1 1 0 1	
	<pre>octave:2> B=[0 0 ;1 0] B =</pre>	
	0 0 1 0	
	<pre>octave:3> (A+B)*(A-B) ans =</pre>	
	0 2 0 2	
	<pre>octave:4> A^2-B^2 ans =</pre>	
	1 2 0 1	
	» [

45. ** 課本答案錯了喔!

Let

Then

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
$$AB = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ r & 0 & r \end{bmatrix}$$
$$BA = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{bmatrix} = \begin{bmatrix} 2 & 0 & r \\ 0 & 1 & 0 \\ 2 & 0 & r \end{bmatrix}$$

Therefore, AB = BA if and only if r = 2 .