Section 3.1

- **6.** Define $(f \oplus q) = \max\{f(x), q(x)\}$, for all $x \in \mathbb{R}$ and (rf)(x) = rf(x), for all $x \in \mathbb{R}$. Assume z(x) is the $\vec{0}$, that is for all f(x), $z(x) = f(x) \oplus (-f)(x) = \max\{f(x), (-f)(x)\} =$ $\max\{f(x), -f(x)\}.$ Let $f(x) = 1, z(x) = f(x) \oplus (-f)(x) = \max\{1, -1\} = 1$. However, by A3, $z(x) \oplus$ $(-f)(x) = (-f)(x) = -1 \neq \max\{1, -1\}$. Therefore, 0 does not exists.
- 16. The set P_n of all polynomials in x, with real coefficients and of degree less or equal to n, together with zero polynomial. Noticed that the set P of all polynomials in x with real coefficients is a vector space. (Example 2 in textbook 3-1) Since P_n is a subset of P. P_n is a vector space if $\vec{0} \in P_n$ and P_n is closed under vector addition and scalar multiplication.

Let $p(x) = p_n x^n + \dots + p_1 x + p_0$, $q(x) = q_n x^n + \dots + q_1 x + q_0$ are two polynomials of degree < n and let r is a real number.

Then

$$(rp)(x) = rp_n x^n + \dots + rp_1 x + rp_0$$

(p+q)(x) = (p_n + q_n)x^n + \dots + (p_1 + q_1)x + (p_0 + q_0)

are polynomials of degree $\leq n$. Hence, the set P_n is closed under vector addition and scalar multiplication.

18. (a) Matrix multiplication is a vector space operation on the set $M_{m \times n}$ of $m \times n$ matrices.

False. Vector space operations are just scalar multiplication and vector addition.

(b) Matrix multiplication is a vector space operation on the set $M_{n \times n}$ of square $n \times n$ matrices.

False. Vector space operations are just scalar multiplication and vector addition.

- (c) Multiplication of any vector by the zero scalar always yields the zero vector. True.
- (d) Multiplication of a non-zero vector by a non-zero scalar always yields a non-zero vector.

True.

- (e) No vector is its own additive inverse. **False.** The zero vector $\vec{0}$ is its own additive inverse.
- (f) The zero vector is the only vector that is its own additive inverse. True.
- (g) Multiplication of two scalars is of no concern to the definition of a vector space. False. Check S3.

- (h) Every vector spaces has at least two vectors. **False.** $\{\vec{0}\}$ with normal vector addition and scalar multiplication is a vector space.
- (i) Every vector space has at least one vector.True. Every vector space contains a zero vector.