Section 6.1 Projections

- **25.** Let W be a subspace of \mathbb{R}^n and let \vec{b} be a vector in \mathbb{R}^n . Prove that there is one and only one vector \vec{p} in W such that $\vec{b}-\vec{p}$ is perpendicular to every vector in W. [HINT: Suppose that \vec{p}_1 and \vec{p}_2 are two such vectors, and show that $\vec{p}_1 \vec{p}_2$ is in W^{\perp} .
- **Answer:** Assume there're two vectors $\vec{p_1}, \vec{p_2} \in W$ such that $\vec{b} \vec{p_1}$ and $\vec{b} \vec{p_2}$ are both perpendicular to every vector in W. i.e. $\vec{b} \vec{p_1}$ and $\vec{b} \vec{p_2}$ are both in W^{\perp} .

For all vector $\vec{v} \in W$

$$\begin{aligned} 0 &= \vec{v} \cdot (\vec{b} - \vec{p_1}) = \vec{v} \cdot \vec{b} - \vec{v} \cdot \vec{p_1} \therefore \vec{v} \cdot \vec{b} = \vec{v} \cdot \vec{p_1} \\ 0 &= \vec{v} \cdot (\vec{b} - \vec{p_2}) = \vec{v} \cdot \vec{b} - \vec{v} \cdot \vec{p_2} \therefore \vec{v} \cdot \vec{b} = \vec{v} \cdot \vec{p_2} \\ &\therefore \vec{v} \cdot (\vec{p_1} - \vec{p_2}) = 0 \\ &\therefore \vec{p_1} - \vec{p_2} \in W^{\perp} \end{aligned}$$

Note that W is a vector space and $\vec{p_1}, \vec{p_2} \in W$, we will have $\vec{p_1} - \vec{p_2} \in W^{\perp}$. Since $\vec{p_1} - \vec{p_2}$ in both W and W^{\perp} , we can easily checked that $\vec{p_1} - \vec{p_2} = \vec{0}$.