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VECTORS, MATRICES, AND
LINEAR SYSTEMS

We have all solved simultaneous linear equations—for example,
2x+ y= 4
x—2y=-3

We shall call any such collection of simultaneous linear equations a linear
system. Finding all solutions of a linear system is fundamental to the study of
linear algebra. Indeed, the great practical importance of linear algebra stems
from the fact that linear systems can be solved by algebraic methods. For
example, a [inear equation in one unknown, such as 3x = 8, is easy to solve.
But the nonlinear equations x* + 3x = 1, x* = 100, and x — sin x = | are all
difficult to solve algebraically.

One often-used technique for dealing with a nonlinear problem consists of
linearizing the problem—that is, approximating the problem with a linear one
that can be solved more easily. Linearization techniques often involve
calculus. If you have studied calculus, you may be familiar with Newton’s
method for approximating a solution to an equation of the form f(x) = 0; an
example would be x — 1 — sin x = 0. An approximate solution is found by
solving sequentially several linear equations of the form ax = b, which are
obtained by approximating the graph of fwith lines. Finding an approximate
numerical solution of a partial differential equation may involve solving a
linear system consisting of thousands of equations in thousands of unknowns.
With the advent of the computer, solving such systems is now possible. The
feasibility of solving huge linear problems makes linear algebra currently one
of the most useful mathematical tools in both the physical and the social
sciences.

The study of linear systems and their solutions is phrased in terms of
vectors and matrices. Sections 1.1 and 1.2 introduce vectors in the Euclidean
spaces (the plane, 3-space, etc.) and provide a geometric foundation for our
work. Sections 1.3-1.6 introduce matrices and methods for solving linear
systems and study solution sets of linear systems.
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1.1

VECTORS IN EUCLIDEAN SPACES
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We all know the practicality of two basic arithmetic upmauuua—uauw}y,
adding two numbers and multiplying one number by another. We can regard
the real numbers as forming a line which is a one-dimensional space. In this
section, we will describe a useful way of adding two points in & plane, which is
a two-dimensional space, or two points in three-dimensional space. We will
even describe what is meant by n-dimensional space and define addition of
two points there. We will also describe how to multiply a point in two-, three-,
and n-dimensional space by a real number. These extended notions of
addition and of multiplication by a real number are as useful in #-dimensional
space for n > 1 as they are for the one-dimensional real number line. When
these operations are performed in spaces of dimension greater than one, it is
conventional to call the elements of the space vecters as well as peoints. In this
section, we describe a physical model that suggests the term vector and that
motivates addition of vectors and multiplication of a vector by a number. We
then formelly define these operations and list their properties.

Euclidean Spaces

Let R be the set of all real numbers. We can regard R geometrically as the
Euclidean line—that is, as Euclidean 1-space. We are familiar with rectangular
x,y-coordinates in the Euclidean plane. We consider each ordered pair (a, b)
of real numbers to represent a point in the plane, as illustrated in Figure 1.1.
The set of all such ordered pairs of real numbers is Euclidean 2-space, which
we denote by R?, and often call the plane.

To coordinatize space, we choose three mutually perpendicular lines as
coordinate axes through a point that we call the origin and label §, as shown in
Figure 1.2. Note that we represent only half of each coordinate axis for clarity.
The coordinate system in this figure is called a right-hand system because,
when the fingers of the right hand are curved in the direction required to rotate
the positive x-axis toward the positive y-axis, the right thumb points up the
z-axis, as shown in Figure 1.2. The set of all ordered triples (a, b, ¢) of real
numbers is Euclidean 3-space, denoted R®, and often simply referred to as
space.

Although a Euclidean space of dimension four or more may be difficult for
us to visualize geometrically, we have no trouble writing down an ordered
quadruple of real numbers such as (2, -3, 7, #) or an ordered quintuple such
as (0.3, 3, 2, —5, 21.3), etc. Indeed, it can be useful to do this. A household
budget might contain nine categories, and the expenses allowed per week in
each category could be represented by an ordered 9-tuple of real numbers.
Generalizing, the set R” of all ordered n-tuples (x,, x,, . . . , x,) of real numbers
is Euclidean n-space. Note the use of just one letter with consecutive integer
subscripts in this n-tuple, rather than different letters. We will often denote an
element of R? by (x,, x,) and an element of R® by (x;, x,, x;).
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FIGURE 1.1 FIGURE 1.2
Rectangular coordinates in the plane. Rectangular coordinates in space.

The Physical Notior of a Vector

We are accustomed to visualizing an ordered pair or triple as a point in the
plane or in space and denoting it geometrically by a dot, as shown in Figures
1.1 and 1.2. Physicists have found another very useful geometric interpreta-
tion of such pairs and triples in their consideration of forces acting on a body.
The motion in response to a force depends on the direction in which the force
1s applied and on the inagnitude of the force—that is, on how hard the force is
exerted. It is natural to represent a force by an arrow, pointing in the direction

HISTORICAL NOTE THE iDEA OF AN 7-DIMENSIONAL SPACE FOR n > 3 reached acceptance
gradually during the nineteenth century; it is thus difficult to pinpoint a first “invention™ of this
concept. Among the various early uses of this notion are its appearances in a work on the
divergence theorem by the Russian mathematician Mikhail Ostrogradskii (1801-1862) in 1836,
in the geometrical tracts of Hermann Grassmann (1809-1877) in the early 1840s, and in a brief
paper of Arthur Cayley (1821-1895) in 1846. Unfortunately, the first two authors were virtually
ignored in their lifetimes. In particular, the work of Grassmann was quite philosophical and
extremely difficult to read. Cayley’s note merely stated that one can generalize certain results to
dimensions greater than three “without recourse to any metaphysical notion with regard to the
possibility of a space of four dimensions.” Sir William Rowan Hamilton (1805-1865), in an 1841
letter, also noted that “it must be possible, in some way or other, to introduce not only triplets but
polyplets, so as in some sense to satisfy the symbolical equation

a=(a,a,...,a,)

a being here one symbol, as indicative of one (complex) thought; and a,, a,, . . . , a, denoting n real
numbers, positive or negative.”

Hamilton, whose work on quaternions will be mentioned later, and whe spent much of his
professional life as the Royal Astronomer of Ireland, is most famous for his work in dynamics. As
Erwin Shrodinger wrote, “the Hamiltonian principle has become the cornerstone of modern
physics, the thing with which a physicist expects every physical phenomenon to be in conformity.”
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in which the force is acting, and with the length of the arrow representing the
magnitude of the force. Such an arrow is a force vector.

Using a rectangular coordinate system in the plane, note that if we
consider a force vector to start from the origin (0, 0), then the vector is
completely determined by the coordinates of the point at the tip of the arrow.
Thus we.can consider each ordered pair in R? to represent a vector in the plane
as well as a point in the plane. When we wish to regard an ordered pair as a
vector, we will use square brackets, rather than parentheses, to indicate this.
Also, we often will write vectors as columns of numbers rather than as rows,
and bracket notation is traditional for columns. Thus we speak of the point
(1, 2) in R? and of the vector [1, 2] in R”. To repiesent the point (1, 2) in the
plane, we make a dot at the appropriate place, whereas if we wish to represent
the vector[1, 2], we draw an arrow emanating from the origin with its tip at the
place where we would plot the point (1, 2). Mathematically, there is no
distinction between (1, 2) and [1, 2]. The different notations merely indicate
different views of the same member of R2. This is illustrated in Figure 1.3. A
similar observation holds for 3-space. Generalizing, each n-tuple of real

numbers can be viewed both as a point (x;, X, ..., Xx,) and as a vector
[x), X%, . . . , X,] in R". We use boldface letters such as a = [a,, a,], v = [v;, V), 3],
and x = [x,, Xx,, . . . , x,] to denote vectors. In written work, it is customary to

place an arrow over a letter to denote a vector, as in 3, v, and . The ith entry x;
in such a vector is the ith component of the vector. Even the real numbers in R
can be regarded both as points and as vectors. When we are not regarding a
real number as either a point or a vector, we refer to it as a scalar.

Two vectorsv=[v,,v,, ...,v Jandw=[w,w,, ... w,]areequalifn=m
and v; = w, for each i.

A vector containing only zeros as components is called a zero vector and
is denoted by 0. Thus, in R? we have § = [0, 0] whereas in R* we have 0 =
(0, 0, 0, 0].

When denoting a vector v in R” geometrically by an arrow in a figure, we
say that the vector is in standard position if it starts at the origin. If we draw an

X2 Xa
A A
2t .“’2) 21
1T 171 v=11,2]
! > X . >
0 1 ! 0 1 &
(a) (b)
FIGURE 1.3 ’

Two views of the same member of R (a) the point (1, 2); (b) the vector v = [1, 2].



11 VECTORS IN EUCLIDEAN SPACES 5

4 4
v Translated v
ol p
FIGURE 1.4 FIGURE 1.5
v translated to P. The vector sum F, + F,.

arrow having the same length and parallel to the arrow representing v but
starting at a point P other than the origin, we refer to the arrow as v translated
to P. This is illustrated in Figure 1.4. Note that we did not draw any coordinate
axes; we only marked the origin 0 and drew the two arrows. Thus we can
consider Figure 1.4 to represent a vector v in R%, R or indeed in R” for n = 2.
We will often leave out axes when they are not necessary for our understand-
ing. This makes our figures both less cluttered and more general.

Vector Algebra

Physicists tell us that if two forces corresponding to force vectors F, and F, act
on a body at the same time, then the two forces can be replaced by a single
force, the resultant force, which has the same effect as the original two forces.
The force vector for this resultant force is the diagonal of the parallelogram
having the force vectors F, and F, as edges, as illustrated in Figure 1.5. It 13
natural to consider this resultant force vector to be the sum F, + F, of the two
original force vectors, and it is so labeled in Figure 1.5.

HISTORICAL NOTE THE CONCEPT OF A VECTOR in its earliest manifestation comes from
physical considerations. In particular, there is evidence of velocity being thought of as a vector—a
quantity with magnitude and direction—in Greek times. For example, in the treatise Mechanica
by an unknown author in the fourth century B.c. is written: “When a body is moved in a certain
ratio (i.e., has two linear movements in a constant ratio to one another), the body must move in a
straight line, and this straight line is the diagonal of the parallelogram formed from the straight
lines which have the given ratio.” Heron of Alexandria (first century a.p.) gave a proof of this result
when the directions were perpendicular. He showed that if a point A moves with constant velocity
over a line 4B while at the same time the line AB moves with constant velocity along the parallel
lines AC and BD so that it always remains parallel to its original position, and that if the time 4
takes to reach B is the same as the time 4 B takes to reach CD, then in fact the point A moves along
the diagonal AD. R

This basic idea of adding two motions vectorially was generalized from velocities to physical
forces in the sixteenth and seventeenth centuries. One example of this practice is found as
Corollary 1 to the Laws of Motion in Isaac Newton’s Principia, where he shows that “a body acted
on by two forces simultansously will descrive the diagonal of a parallelogram in the same time as it
would describe the sides by those forces separately.”
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We can visualize two vectors with different directions and emanating from
a point P in Euclidean 2-space or 3-space as determining a plane. It is
pedagogice!ly useful to do this for n-space for any n = 2 and show helpful
figures on our pages. Motivated by our discussion of force vectors above, we
consider the sur of two vectors v and w starting at a point P to be the vector
starting at P that forms the diagonal of the paiallelogram wiih a vertex at Pand
having edges represented by v and w, as illustrated in Figure 1.6, where we take
the vectors in R” in standard position starting at 0. Thus we have a geometric
understanding of vector addition in R". We have labeled as translated v and
translated w the sides of the parallelogram opposite the vectors v and w.

Note that arrows along opposite sides of the parallelogram point in the
same direction and have the same length. Thus, as a force vector, the
translation of v is considered to be equivalent to the vector v, and the same is
true for w and its translation. We can think of obtaining the vector v + w by
drawing the arrow v from 0 and then drawing the arrow w translated to start
from the tip of v as shown in Figure 1.6. The vector from 0 to the tip of the
translated w is then v + w. This is often a useful way to regard v + w. To add
three vectors u, v, and w geometrically, we translate v to start at the tip of wand
then translate w to start at the tip of the translated v. The sum u + v + w then
begins at the origin where u starts, and ends at the tip of the translated w, as
indicated in Figure 1.7,

The difference v — w of two vectors in R” is represented geometrically by
the arrow from the tip of w to the tip of v, as shown in Figure 1.8. Here v — wis
the vector that, when added to w, yields v. The dashed arrow in Figure 1.8
shows v — w in standard position.

If we are pushing a body with a force vector F and we wish to “double the
force”—that is, we want to push in the same direction but twice as hard—
then it is natural to denote the doubled force vector by 2F. If instead we want
to push the body in the opposite direction with one-third the force, we denote
the new force vector by —%F. Generalizing, we consider the product rv of a
scalar r times a vector v in R” to be represented by the arrow whose length is |r|
times the length of v and which has the same direction as v if r > 0 but the
opposite direction if 7 < 0. (See Figure 1.9 for an illustration.) Thus we have a
geometric interpretation of scalar multiplication in R"—that is, of multiplica-

tion of a vector in R by a scalar.
Translated v -

Translated v-

0

FIGURE 1.6 FIGURE 1.7
Representation of v + w in R". Representation of u + v + w in R",
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|d. The vectorv — w.
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FIGURE 1.9
Computation of rv in R

Taking a vecior v = [v,, v,] in R? and any scalar r, we would like to be able to
contpute rv algebraically as an element (ordered pair) in R% and not just
represent it geometrically by an arrow. Figure 1.9 shows the vector 2v which
points in the same direciion as v but is twice as long, and shows that we have 2v
= [2¥,, 2v,]. It also indicates that if we multiply all components of v by —%, the
resulting vector has direction opposite to the direction of v and length equal to
1 the length of v. Similarly, if we take two vectors v = [v,, v,] and w = [w,, w,] in
R2 we would like to be able to compute v + w algebraically as an element
(ordered pair) in R? Figure 1.10 indicates that we have v + w = [v, + w,,
v, + w,]—that is, we can simply add corresponding components. With these
figures to guide us, we formally define some algebraic operations with vectors
in R~

DEFINITION 1. 1 VectorAigebra in R

Letv [vl, v2, L. ,,] and w = [w;, w,, . . ., w,] be vectorsin R". The
vectors are added and subtracted as follows:
Vector addltlon v+w= [v, Fw, Mt W, ...,V T W]

Vector subtractmn V- [vl Wi, Vy = Wy ooy ¥, — W]
If r is anly scalar, the: vector v is multiplied by r as follows
Scalar muluphcatmn Y =[rv, rvy, ..., 1]

As a natural extension of Definition 1.1, we can combine three or more
vectors in R” using addition or subtraction by simply adding or subtracting
their corresponding components. When a scalar in such a combination is
negative, as in 4u + (—7)v + 2w, we usually abbreviate by subtraction, writing
d4u — Tv + 2w. We write —v for (—1)v.
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X2
A

('U] + Wi, U2 + Wz)

vy + wy
‘U2+
v+w

Wy <
v
/| l

——
—_—t —+ + - X
v v} wi v +wy

FIGURE 1.10
Cornputation of v + w in k2

Let v=1[-3,5 —1]and w = {4, 10, —7] in R®. Compute Sv — 3w.

We compute
5v — 3w = 5[-3, 5, —1] - 3[4, 10, =7]
=[-15, 25, =5] - [12, 30, —21]
= [-27, =5, 16]. L]
For vectors v and w in R* pointing in different directions from the origin,
represent geometrically 5v — 3w.
This is done ir. Figure 1.11. =
The analogues of many familiar algebraic laws for addition and multipli-
cation of scalars also hold for vector addition and scalar multiplication. For
convenience, we gather them in a theorem.
s 5v— 3w Sv
///// v
—Ew 0 w
FIGURE 1.11

S5v = 3win R".



1.1 VECTORS IN EUCLIDEAN SPACES 9

THEOREM 1.1 Properties of Vector Algebra in R

Let u, v, and w be any vectors in R”, and let r and s be any scalars in R.

Properties of Vector Addition

Al W+v)+w=u+(v+w An associative law
A2 v+w=w+yv A commutative law
A3 C+v=y 0 as additive identity
» A4 v +(—v) =0 , —v as additive inverse of v

‘ Propéftigs‘lhirdlving Scalar Multiplication

St r(v+w)=rv+rw A distributive law

S2 (r+s)v =rv+ sy A distribative law

83 r(sv) = (rs)v An associative law
US4 wEv o Preservation of scale

The eight properties given in Theorem 1.1 are quite easy to prove, and we
leave most of them as exercises. The proofs in Examples 3 and 4 are typical.

EXAMPLE 3 Prove property A2 of Theorem 1.1.
SOLUTION Writing

V=1V, V..., ] and w=[w, wy, ..., W],
' we have
in, VAEWS[n+w, vyt Wy, v+ W]
and
wtyv=[w+v,w,t o, .., w, V]
i These two vectors are equal because v, + w; = w; + v, for each i. Thus, the
‘or commutative law of vector addition follows directly from the commutative law

of addition of numbers. =

EXAMPLE 4 Prove property S2 of Theorem 1.1.

SOLUTION Writing v = [y, v,, . . ., ¥,], we have
(r+sywv=0+9)v,v,....v]
=[(r+ sy, (r+ 8y, ..., + 5,
=[rv, +sv, vy + SV, ., 1y, +o8Y,]
=[rv, vy, v+ [sv,0sv,, L, S
=rv + sv.

Thus the property (r + s)v = rv + sv involving vectors foilows from the
analogous property (r + s)a; = ra; + sa; for numbers. =
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Parallel Vectors

The geometric significance of multiplication of a vector by a scalar, as
illustrated in Figure 1.9, leads us to this characterization of parallel vectors.

DEFI NITION 1.2 Parallel Vectors

Two nonzero vectors v and w in R" are parallel, and we write v || w, if
one is a scalar multiple of the other. If v = rw with r > 0, thenvand w
have the same direction; if 7 < 0, then v and w have opposite directions.

Determine whether the vectors v = [2, I, 3, —4] and w = [6, 3, 9, —12] are
paraliel. '

We put v = rw and try to solve for r. This gives rise to four component
equations:

2 = 6r, 1 =3r, 3 =9r, -4 = —12r.

Because r = % > 0 is a common solution to the four equations, we conclude that
v and w are parallel and have the same direction. ®

Linear Combinations of Vectors

Definition 1.1 describes how to add or subtract two vectors, but as we
remarked following the definition, we can use these operations to combine
three or more vectors also. We give a formal extension of that definition.

DEFINITION 1.3 Linear Combination

Given vectors v;, v, . . ., ¥, in R* and scalars r, ry, . . ., 1, in R, the
vector

erl + 72V2 + 0+ rka

is a linear combination of the vectors v,, v, ..., v, with scalar
coefficients 7, r,, . . ., 1.

The vectors [1, 0] and [0, 1] play a very important role in R?. Every vector
b in R? can be expressed as a linear combination of these two vectors in a
unique way—namely, b = [b,, b,] = r,[1, 0] + r,[0, 1] if and only if r, = b, and
r, = b, We call {1, 0] and [0, 1] the standard basis vectors in R They are
often denoted by i = [1, 0] and j = [0, 1], as shown in Figure 1.12(a). Thus in
R?, we may write the vector [b,, b;] as b,i + b,j. Similarly, we have three
standard basis vectors in R*—namely,

i=[1,00 j=[0,1,0], and k=1[0,0,1],
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FIGURE 1.12

{a) Standard basis vectors in R? (b) standard basis vectors in R>.

as shown in Figure 1.12(b). Every vector in R? can be expressed uniquely as a
linear combination of i, j, and k. Fer example, we have [3, =2, 6] = 31 — 2j +
ok. For # > 3, we denote the rth standard basis vector, having 1 as the rth
component and zeros elsewhere, by

e,=[0,0,...,0,1,0,...,0]
1

rth component
We then have
b=1[b,b,...,0]=be +be,+ -+ be,

We see that every vector in R" appears as a unique linear combination of the
standard basis vector in R”.

The Span of Vectors

Let v be a vector in R". Ail possibie linear combinations of this single vector v
are simply all possible scalar multiples v for all scalars . If v # 0, all scalar
multiples of v fill a line which we shall call the line along v. Figure 1.13(a)
shows the line along the vector [—1, 2] in R? while Figure 1.13(b) indicates the
line along a nonzero vector v in R".

Note that the line along v always contains the origin (the zero vector)
because one scalar multiple of v is Ov = 0. <

Now let v and w be two nonzero and nonparaliel vectors in R". All possible
linear combinations of v and w are all vectors of the form rv + sw for all scalars
rand 5. As indicated in Figure 1.14, all these linear combinations fill a plane
which we call the plane spanned by v and w.
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A2
A
\ /
\
v v
1T
jiuio\ > X} 0
(@) (b)
FIGURE 1.13

a) The line along v in R? (b) The line along v in R™.
) 9

EXAMPLE 6 Referring to Figure 1.15(a), estimate scalars r and s such that rv + sw = b for
the vectors v, w, and b all lying in the plane of the paper. ’

SOLUTION We draw the line along v, the line along w, and parallels to these lines through
the tip of the vector b, as shown in Figure 1.15(b). From Figure 1.15(b), we
estimate that h = 1.5v — 2.5w. =

FIGURE 1.14
The plane spanned by v and w.
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A w

(@ (b)

FIGURE 1.15
(a) Vectors v, w, and b; (b) finding r and s so that b = rv + sw.

We now give an analytic analogue of Example 6 for two vectors in R2.

Let v = [i, 3] and w = [-2, 5] in R% Find scalars r and s such that rv + sw =
[—1, 19].

Because rv + sw =1, 3] + 5[=2, 5] = [r — 2s, 3r + 55], we see that rv + sw =
[-1, 19] if and only if both equations

r—2s=-1

3r+5s=19
are satisfied. Multiplying the first equation by —3 and adding the result to the
second equation, we obtain

0+ 11s = 22,

s0 5 = 2. Substituting in the equation r — 2s = —1, we find that r = 3. =

We note that the components —1 and 19 of the vector [—1, 19] appear on
the right-hand side of the system of two linear equations in Example 7. If we
replace — 1 by b, and 19 by b,, the same operations on the equations will enable
us to solve for the scalars r and s in terms of b, and b, (see Exercise 42). This
shows that all linear combinations of v and w do indeed fill the plane R2.

Example 7 indicates that an attempt to express a vector b as a linear
combination of given vectors corresponds to an attempt to find a solution of a
system of linear equations. This parallel is even more striking if we write our
vectors as columns of numbers rather than as ordered rows of numbers—that
is, as column vectors rather than as row vectors. For example, if we write the
vectors v and w in Example 7 as columns so that

] o[
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and also rewrite [~ 1, 19] as a column vector, then the row-vector equation
rv + sw = [—1, 19] in the statement of Example 7 becomes

13/ 770 5] 119
Notice that the numbers in this column-vector equation are in the same
positions relative to each other as they are in the system of linear equations

r—2s=-1
3r+5s=19

that we solved in Example 7. Every system of linear equations can be rewritten
in this fashion as a single column-vector equation. Exercises 35-38 provide
practice in this. Finding scalars r,, r,, . . ., r,such that ryv, + rv, + < < = + ny,
= b for given vectors v, v,, . . . , v,and bin R"is a fundamental computation in
linear algebia. Section 1.4 describes an algorithm for finding all possible such
scalars r, ry, . . ., I

The preceding paragraph indicates that often it will be natural for us to
think of vectors in R" as column vectors rather than as row vectors.

The transpose of a row vector v is defined to be the corresponding column
vector, and is denoted by v”. Similarly, the transpose of a column vector is the

11Ys

corresponding row vector. For example,

~1 o7
4
[-1, 4,15 -7 = 15 and |-30| =[2, —30, 45].
-7 45

Note that for all vectors v we have (v')7 = v. As illustrated following Example
7, column vectors are often useful. In fact, some authors always regard every
vector v in R as a column vector. Because it takes so much page space to write
column vectors, these authors may describe v by giving the row vector v7. We
do not follow this practice; we will write vectors in R" as either row or column
vectors depending on the context.

Continuing our geometric discussion, we expect that if u, v, and w are three
nonzero vectors in R* such that u and v are not parallel and also w is not a
vector in the plane spanned by u and v, then the set of all linear combinations
cfu, v, and w will fill a three-dimensional portion of R"—that is, a portion of
R” ihat looks just like R?, We consider the set of these linear combinations to be
spanned by u, v, and w. We make the followirg definition.

DEFINITION 1.4 Spanofv, v, ...,V
Letv,v,, ..., v.bevectorsin R" The span of these vectors is the set o
all linear combinations of them and is denoted by sp(v,, v,, . . ., v,). In

set notation,

PV, Vo, ..., V) ={rv, + iy, + s Ay |, ..., €ERL




1.1 VECTORS IN EUCLIDEAN SPACES 15

It is important to ncte that sp(v,, v,, . . . , v,) in R” may not fill what we

intuitively consider to be a k-dimensional porticn of R". For example, in R? we

Vil Ul

see that sp([1, —2], [=3, 6]) is just the one-dimensional line along [1, —2]
because [—3, 6] = —3[1, -2 already lies in sp({1, —2]). Similarly, if v, is a
vector in sp(v,, v;), then sp(v,, v;, v3) = sp(v,, v,) and so sp(v,, ¥,, v;) is not
three-dimensional. Section 2.1 will deal with this kind of dependency among
vectors. As a result of our work there, we will be able to define dimensionality.

7 SUMMARY

!\)

Euclidear. n-space R" consists of all ordered r-tuples of real numbers. Each
n-tuple x can be regarded as a point (x,, X, ..., x,) and represented
graphically as a dot, or regarded as a vector [x,, X,,..., x,] and
represented by an arrow. The n-tuple 0 = [0, 0, . . . , 0] is the zero vector. A
real number r € R is called a scaiar.

Vectors v and w in R” can be added and subtracted, and each can be
multiplied by a scalar r € R. In each case, the operation is performed on
the components, and the resulting vector is again in R". Properties of these
operations are summarized in Theorem 1.1. Graphic interpretations are

shown in Figures 1.6, 1.8, and 1.9.

Two nonzero vectors in R” are parallel if one is a scalar multiple of the
other.

A linear combination of vectors v,, v, . . ., v, in R" is a vector of the foim
ry, +ry, + - <+ + v, where each r,is a scalar. The set of all such linear
combinations is the span of the vectors v, v,, . . ., v, and is denoted by
SP(¥y, Vo « « - 5 Vo).

Every vector in R” can be expressed uniquely as a linear combination of
the standard basis vectorse,, e,, . . . ,e,, where ¢;has | asits ith component
and zeros for all other components.

EXERCISES

In Exercises 1-4, computev + w and v — w for In Exercises 5-8, letu = [—1, 3, =2],v =

the given vectors v and w. Then draw coordinate [4, 0, —1], and w = [-3, -1, 2]. Compute the
axes and sketch, using your answers, the vectors v, indicated vector.

W, Vv+w andv — w.

SW 0 e
Dl

v=1{2, -1}, w=[—
v=1[1,3],w=[-2,9]

v=i+3j+2k,w=1i+2j+4k
v=2i-j+ 3k w=3i+5j+ 4k

3, -2} 5. 3u-—2v
6. u+ 2(v— 4w)
7. u+v-w
8. 4(3u + 2v — Sw)
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