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1.2 THE NORM AND THE DOT PRODUCT

TR Y

The Magnitude of a Vector

The magnitude ||v|| of v = [v,, v,] is considered to be the length of the arrow in
Figure 1.18. Using the Pythagorean theorem, we have

M = Vv F VL M

EXAMPLE 1 Represent the vector v = [3, —4] geometrically, and find its magnitude‘.
SOLUT!ON The vector [3, -4} has magnitude
Ml = /3 (AT = V35 =
and is shown in Figure 1.19. =

In Fignre 1.20, the magnitude ||v|| of a vector v = [v,, v,, v;] in R® appears as ¢
the length of the hypotenuse of a right triangle whose altitude is |v;| and whose

base in the x,,x,-plane has length Vv,* + v,2. Using the Pythagorean theorem, “

we obtain

Ml = VT v+ v @ &

I3

: £

EXAMPLE 2 Represent the vector v = [2, 3, 4] geometrically, and find its magnitude. %
E

SOLUTION The vector v = [2, 3, 4] has magnitude |lv| = V22 + 32 + 4 = V29 and is E
represented in Figure 1.21. = E
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FIGURE 1.18 FIGURE 1.19
The magnitude of v in R2 The magnitude of [3, —4].
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st~ IM= V29
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Y

X2

Uy

%

\., 2 2
v"+ vy X)

£xy
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'5%The magnitude of v in R®. The magnitude of {2, 3, 4].
Y
The magnitude of a vector is also called the norm or the length of the
2): vector. As suggested by Egs. (1) and (2), we define the norm ||v]| of a vector v in
R" as follows.
s DEFINITION 1.5 Norm or Magnitude of a Vector in R"
Lis
Letv=[v,v,...,v,]bea vectorin R" The norm or magnitude of v is
Ml = Vw® 4 v+l 3)
XAMPLE 3 Find the magnitude of the vector v = [-2, 1, 3, ~1, 4, 2, 1].
SOLUTION We have
- M= V(=2 + P+ 37+ (-1 + 42+ 27+ 2=V36=6 =
x

Here are some properties of this norm operation.
THEOREM 1.2 Properties of the Norm in R"

For all vectors v and w in R" and for all scalars r, we have

1. |Vl = 0 and ||v|| = O if and only if v =0 Positivity

2. vl = |7 vl Homogeneity

3. 0v + wil = |vll + (w]] Triangle inequality
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0

FIGURE 1.22
The triangle inequality.

Proofs of Properties 1 and 2 foliow immediately from Definitien 1.5 and
appear as exercises at the end of this section. Figure 1.22 shows why Property 3
1§ called the triangie inequality; geometrically, it states that the length of a side
of a triangie is less than or equal to the sum of the lengths of the other two
sides. Although this seems obvious to us from Figure 1.22, we really should
prove it—at least for n > 3, where we simply extended our definition of ||v|| for
v in R? or R* without any further geometric justification. A proof of the triangle
inequality is given at the close of this section.

Unit Vectors
A vector in R" is a unit vector if it has magnitude 1. Given any nonzero vector v
in R", a unit vector having the same direction as v is given by (1/[|v]|)v.

Find a unit vector having the same directionas v = [2, 1, —3], and find a vector
of magnitude 3 having direction opposite to v.

Because ||| = V22 + 12 + (-3)’ = V14, we see that u = (1/V14)[2, 1, -3]is

the unit vector with the same direction as v, and —3u = (=3/\V14)[2, 1, -3]
is the other required vector. =

The two-component unit vectors are precisely the vectors that extend from
the origin to the unit circle x* + y? = 1 with center (0, 0) and radius 1 in R2. (See
Figure 1.23a.) The three-component unit vectors extend from (0, 0, 0) to the
unit sphere in R3, as illustrated in Figure 1.23(b).

Note that the standard basis vectors i and jin R?, as well as 1, j, and k in R?,
are unit vectors. In fact, the standard basis vectors e, e,, . . . , e, for R" are unit

1. For this reason, these standard basis vectors are also called unit coordinate
vectors.

vectors, because each has zeros in all components except for one component of
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(b)

(a)

FIGURE 1.23
(a) Typical unit vector in R% (b) typical unit vector in R,

The Dot Product

The dot product of two vectors is a scalar that we will encounter as we now
try to define the angle 6 between two vectors v = [v,, v,, ..., v,] and w =
[wy, Wy, ..., w,] in R", shown symbolicaliy in Figure 1.24. To motivate the
definition of 6, we will use the law of cosines for the triangle symbolized in
Figure 1.24. Using our definition of the norm of a vector in R" to compute the
lengths of the sides of the triangle, the law of cosines yields

[IM[* + [wl[* = ilv — wi[* + 2ivl| [[wl| (cos 6)
or
vit oo et yiawlt e b}
= =wt e+ (= w)t + 2] W] (cos 8). (4
After computing the squares on the right-hand side of Eq. (4) and simplifying,
we obtain

¥l [iwl] (cos 8) = ww, + - -« + vw, (5)

v~ wl

6
V w
FIGURE 1.24
The angle between v and w.
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The sum of products of corresponding components in the vectors v and w on
the right-hand side of Eq. (5) is frequently encountered, and is given a special
name and notation. ‘

DEFINITION 1.6 The Dot Product
The dot product of vectors v = [v, vy, . . ., v,Jand w = [w, W,, . . . , W,]
in R* is the scalar given by

Vew=yw Hymt oo+, ©

The dot product is sometimes called the inner product or the scalar
product. To avoid possible confusion with scalar multiplication, we shall never
use the latter term.

In view of Definition 1.6, we can write Eq. (5) as

vew=|v||[w] (cos 6). )

Equation (7) suggests the following definition of the angle 6 between two
vectors v and w in R”.

The angle between nonzero vectors v and w is arccos ( va-”—”‘-;ﬂ) )
\

Expression (8) makes sense, provided that

1= o )]
[[vI] [Iw]

so that we can indeed compute the arccosine of (v - w)/(]|v|| |[w||). This inequality
(9) is usually rewritten in the form

lv e w| <|lv]|[w]|. Schwarz inequality (10)
We obtained it by assuming that Figure 1.24 is an appropriate representation
for vectors v and w in R, We give a purely algebraic proof of it at the end of this
section to validate the definition in expression (8).
Find the angle 6 between the vectors [, 2, 0, 2] and [—3, 1, L, 5] in R*,
We have
6= [1,2,0,2]-[-3, 1,1, 9] _ 9 1

SI=ENTT 2+ 0+ 2 V() + P+ P+ 36 2

Thus, 6 = 60°. =
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Equation 7 gives a geometric meaning for the dot product.

The dot product of two vectors is equal to the product of their
magnitudes with the cosine of the angle between them.

THEOREM 1.3 Properties of the Dot Product in R”

Let u, v, and w be vectors in R" and let » be any scalar in R. The
following properties hold:

Dl vew=w-y, ‘ Commutative law
D2u-(v+wy=u-v+u-w, . Distributive law
D3 r(v-w)=(rv)-w=1v-(rw), Homogzsneity

D4 v-v=0,andv-v=20if and only if v = 0. Positivity

Verification of all of the properties in Theorem 1.3 is straightforward, as
illustrated in the following example.

HISTORICAL NOTE THE SCHWARZ INEQUALITY is due independently to Augustin-Louis Cauchy
(1789-1857) (see note on page 3), Hermann Amandus Schwarz (1843-1921), and Viktor
Yakovlevich Bunyakovsky (1804-1889).

It was first stated as a theorem about coordinates in an appendix to Cauchy’s 1821 text for his
course on analysis at the Ecole Polytechnique, as follows:

laa+ayar+anau+._.|S—\/az+a,3+au:+,__ ‘\/a]+al:+a"2+..-_

Cauchy’s proof follows from the algebraic identity
(aa +a'a’ +a'a" + Y+ (aa’ —a'a) + (ad" — daf + - +(da" —addY+
=(@+a*+ad"+ Y+ F "+ )
Bunyakovsky proved the inequality for functions in 1859; that is, he stated the result

b 1 h b
|L f a fx)gix) d_\'J = ] . ) dox - Ja £3(x) dv,

where we can consider J'z J(x)g(x; dx to be the inner product of the functions f{x), g(x) in the
vector space of continuous functions on [a, b]. Bunyakovsky served as vice-president of the St.
Petersburg Academy of Sciences from 1864 until his death. In 1875, the Academy established a
mathematics prize in his name in recognition of his 50 years of teaching and research.

Schwarz stated the inequality in 1884. In his case, the vectors were functions ¢, X of two
variabies in a region 7 in the piane, and the inner product of these functions was given by
I ¢X dx dy, where this integral is assumed to exist. The inequality then states that

[ wvsei| < N[ oacar V[ 7w

Schwarz’s proof is similar to the one given in the text (page 29). Schwarz was the leading
mathematician in Berlin around the turn of the century; the work in which the inequality appears
is devoted to a question about minimal surfaces.
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EXAMPLE 6 Verify the positivity property D4 of Theorem 1.3.

SOLUTION Weletv=[v,v, ... ], and we find that

VY=YV

R AR I

2
+ v

A sum of squares is nonnegative and can be zero if and only if each summand
is zero. But a summand v? is itself a square, and will be zero if and only if v, =
0. This completes the-demonstration. =

It is important to observe that the norm of a vector can be expressed in
terms of its dot product with itself. Namely, for a vector v in B" we have

P =v+v.

(1)

Letting v = [v,, v, - - - ,¥,], we have

Vev=yy ot ow, o

..+

vnvn - ||v||2

Equation 11 enables us to use the algebraic properties of the dot product in
Theorem 1.3 to prove things about the norm. This technique is illustrated in
the preof of the Schwarz and triangle inequalities at the end of this section.

Here is another illustration.

EXAMPLE 7 Show that the sum of the squares of the lengths of the diagonals of a
parallelogram in R” is equal tc the sum of the squares of the lengths of the
sides. (This is the parallelograra relution).

SOLUTION We take our parallelogram with vertex at the origin and with vectors v and w
emanating from the origin to form two sides, as shown in Figure 1.25. The
lengths of the diagonals are then |lv + w|| and ||v — w||. Using Eq. (11) and
properties of the dot product, we have

vV+w

Ty - wif

=(v+w (vt w+(v—w-(v—w
- =W+ 2(veow)H(Wew)ht (vev) - 2(veow) + (W w)
=2(v-v)+ 2w-w

= 2IMP + 2|wiP,

which is what we wished to prove. ®

The definition of the angle § between two vectors vand w in R” leads naturally
tc this definition of perpendicular vectors, or orthogonal vectors as they are

usually called in linear algebra.

SRR

T

Exgivists

:
g,
E
E
:




N IR R )

el

(2" AR ROTTHITAR

e

he
ad

1y
are

EXAMPLE 8

SOLUTION

EXAMPLE 9

1.2 THE NORM AND THE DOT PRODUCT 27

0

FIGURE 1.25
The parallelogram has v + w and
v — w as vector diagonals.

DEFINITION 1.7 Perpendicular or Orthogonal Vectors

Two vectors v and w in R" are perpendicular or orthogonal, and we
writev L w, if v - w = 0,

Determine whether the vectors v = [4, 1, =2, 1] and w = [3, -4, 2, —4] are
perpendicular.

We have
veow = (4)3) + (1)(=4) + (=2)2) + (1)(-4) = 0.

Thus,v L w. =

Application to Velocity Vectors and Navigation

The next two examples are concerned with another important physical vector
model. A vector is the velocity vector of a moving object at an instant if it
points in the direction of the motion and if its magnitude is the speed of the
object at that instant. Physicists tell us that if a boat cruising with a heading
and speed that would give it a still-water velocity vector s is also subject to a
current that has velocity vector ¢, then the actual velocity vector of the boat is
vy=s+c

Suppose that a ketch is sailing at 8 knots, following a course of 010° (that is, 10°
east of north), on a bay that has a 2-knot current setting in the direction 070°
(that is, 70° east of north). Find the course and speed made good. {The
expression made good is standard navigation terminology for the actual course
and speed of a vessel over the bottom.)
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The velocity vectors s for the ketch and ¢ for the current are shown in Figure
1.26, in which the vertical axis points due north. We find s and ¢ by using a
calculator and computing

s = [8 cos 80°, 8 sin 80°] = [1.39, 7.88]
and
¢ = [2 cos 20° 2 sin 20°] = [1.88, 0.684].

By adding s and ¢, we find the vector v representing the course and speed of the
ketch over the bottom—that is, the course and speed made good. Thus we
have v = s + ¢ = [3.27, 8.56]. Therefore, the speed of the ketch is

vl = V(3.27)* + (8.56)* = 9.16 knots,

and the ~ourse made good is given by

90° - arctan(8 56 = 90° — 69° = 21°,

3 27)
That is, the course is 021°. =
Suppose the captain of our ketch realizes the importance of keeping track of

the current. He wishes to sail in 5 hours to a harbor that bears 120° and is 35
nautical miles away. That is, he wishes io make good the course 120° and the

“speed 7 knots. He knows from a tide and current table that the current is

setting due south at 3 knots. What should be his course and speed through the
water?

. N
2
10°
]2
=91
vl =16 -
3
|~ llell =2
/ c
20°
A . 6.06
FIGURE 1.26 FIGURE 1.27

The vectorv = s + c. The vectors = v — ¢.
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In a vector diagram (see Figure 1.27), we again repres=nat the course and speed
to be made good by a vector v and the velocity of the current by ¢. The correct
course and speed to follow are represented by the vector s, which is obtained
by computing

S=v—¢
= [7 cos 30°, =7 sin 30°] — [0, —3]
~ [6.06, —3.5] — [0, —3] = [6.06, —C.5].

Thus the captain should steer course 90° — arctan(—0.5/6.06) =~ 90° + 4.7° =
94.7° and should proceed at

lIsil = V/(6.06)2 + (=0.5) = 6.08 knots. n

Proofs of the Schwarz and Triangle Inequaiities

The proofs of the Schwarz and triangle inequalities illustrate the use of
algebraic properties of the dot product in proving properties of the norm.
Recall Eq. {11): for a vector v in R*, we have

ME = v v.

THEOREM 1.4 Schwarz Inequality

Let v and w be vectors in R". Then |v - w| < ||| ||w].

PROOF Because the norm of a vector is a real number and the square of a real
number is nonnegative, for any scalars r and s we have

lrv + sw|?* = 0. 12)
Using relation (11), we find that _
lrv + sw|* = (rv + sw) « (rv + sw)
=riv-v)+ 2rs(v-w) + sA(w-w)=0
for all choices of scalars  and s. Setting r = w - w and s = —{v - w), the
preceding inequality becomes
(W WY - v) — 2(w - w)(V - W) + (v W)W+ w)
= (W WY - %) = (- W w2 = 0.
Factoring out (w - w), we see that
(w-wW[(w-w)v-v)—(v- w)QZ] = (. (13)

If w - w = 0, then w = 0 by the positivity property in Theorem 1.3, and the
Schwarz inequality is then true because it reduces to 0 < 0. If |wj* = w - w # 0,
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then the expression in square brackets in relation (13) must also be nonnega-
tive—that is,

(Wwew)(v-v)—(v-w¥=0,
and so

(vowp = (vev)(w - w) = [vwii

Taking square roots, we obtain the Schwarz inequality.

The Schwarz inequality can be used to prove the triangle inequality that
was illustrated in Figure 1.22.

R TR T R T R R T O

THEOREM 1.5 The Triangle Inequality

Let v and w be vectors in R”. Then ||v + w|| < ||v|| + |[w]|.

PROOF Using properties of the dot product, as weli as the Schwarz inequality,
we have

v + w2 = (v + w)(v + w)
=(vev)+2(v-w)+(w-w
= (v v) £ 2| Wl + (w - w)
= [IvIP + 2] Wl + {Iwl?
= (IMl + [wll)*.

The desired relation follows at once, by taking square roots. a

SUMMARY

Letv=1[v,v,...,v]andw=[w, w, ..., w,] bevectorsinR"

1. The norm or magnitude of vis ||v]| = Vv2 + v + - - - +v2
2. The norm satisfies the properties given in Theorem 1.2.

3. A unit vector 1s a vector of magnitude 1.

4. The dot product of vand wisv .w = vw + vyw, + - - + vw,
5. The dot product satisfies the properties given in Theorem 1.3.
6.

and also |[v + wi| < ||v]] + ||w|| (¢triangle inequality).

7. The angle 6 between the vectors v and w can be found by using the relation
v w = |[v]] [[w] (cos 6).

8. The vectors v and w are orthogonal (perpendicular) if v - w = 0.

Moreover, we have v+ v = |v||* and |v - w| < ||V ||w]| (Schwarz inequality), E




