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M6. Enter x = a and enter y = b. Then enter
anglxy = acos(sum(x .+ y)/(norm(x)+norm(y)))

to compute the angle (in radians) between a and b. You should study this
formula until you understand why it provides the angle between a and b.

M7. Compute the angle between b and ¢ using the technique suggested in Exercise
M2. Namely, enter x = b, enter y = ¢, and then use the upward arrow until
the cursor is at the formula for anglxy and press Enter.

MS8. Move the cursor to the formula for anglxy and edit the formula so that the
angle will be given in degrees rather than in radians. Recall that we multiply
by 180/# to convert radians to degrees. The number = is available as pi in
MATLAB. Check your editing by computing the angle between the vectors
[1, 0} and [0, {]. Then find the angle between u and w in degrees.

M09. Find the angle between 3u — 2w and 4v + 2w in degrees.

MATRICES AND THEIR ALGEBRA

The Notation Ax = b
We saw in Section 1.1 that we can write a linear system such as
X, — 2x, = -1
3x, + 5x, = 19 (nH

in the unknowns x, and x, as a single column vector equation—namely,

A

Another useful way to abbreviate this linear system is

R 1 -2 Xy - -1 ()
3 5|x, 19 i
A4 X b

Let us denote by A the bracketed array on the left containing the coefficients of
the linear system. This array 4 is followed by the column vector x of
unknowns, and let the column vector of constants after the equal sign be
denoted by b. We can then symbolize the linear system as

Ax = b. )

There are several reasons why notation (4) is a convenient way to write a linear
system. It is much easier to denote a general linear system by Ax = b than to
write out several linear equations with unknowns x,, x,, . . . , x,, subscripted
letters for the coefficients of the unknowas, and constants b,, b, . . . , b, to the
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right of the equal signs. [Just look ahead at Eq. (1) on page 54.] Also, a single
linear equation in just one unknown can be written in the form ax = b (2x = 6,
for example), and the notation Ax = b is suggestively similar. Furthermore,
we will see in Section 2.3 that we can regard such an array 4 as defining a
Junction whose value at x we will write as Ax, much as we write sin x. Solv-
ing a linear system Ax = b can thus be regarded as finding the vector x
such that this function applied to x yields the vector b. For all of these rea-
sons, the notation Ax = b for a linear system is one of the most uséful nota-
tions in mathematics.
[t is very important to remember that

Ax is equal to a linear combination of the column vectors of A,

as illustrated by Eqgs. (2) and (3)—namely,

BRI )

4 L7 ed

The Notion of a Matrix

We now introduce the usual terminology and notation for an array of numbers
such as the coefficient array 4 in Eq. (3).

A matrix is an ordered rectangular array of numbers, usually euclosed in
parentheses or square brackets. For example,

are matrices. We will generally use-upper-case letters to denote matrices.
_Thesizeofa matrmﬁﬁﬁmrﬂmﬁﬁd the
nuitber of (vertical) columns that it contains. The matrix 4 above contains
iwo rows and two columns and is called a 2 X 2 (read “2 by 2") matrix.
Similarly, Bis a 4 X 3 matrix. In writing the notation m X n to describe the
shape of a matrix, we always write the number of rows first. An n X n matrix
has the same number of rows as columns and is said to be a square matrix. We
recognize that a 1 X n matrix is a row vector with n components, and an m X 1
matrix is a column vector with m components. The rows of a matrix are its row
vectors and the columns are its column vectors.
Double subscripts are commonly used to indicate the location of an entry
in a matrix that is not a row or column vector. The first subscript gives the
number of the row in which the entry appears (counting from the top), and the
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second subscript gives the number of the column (counting from the left).
Thus an m X »n matrix 4 may be written as

Ay A ay s a;,.}
dy, Qy 0w a,,
ay an Ay - a
A= [aij] — k| 3 3 3n
_aml am’. am} e amn_
If we want to express the matrix B on page 36 as [b;], we would have b, = —1,

by, = 2, by, = 5, and so on.

Matrix Muitiplication

We are going to consider the expression Ax shown in Eq. (3) to be the product
of the matrix 4 and the column vector x. Looking back at Eq. (5), we see that
such a product of a matrix 4 with a column vector x should be the linear
combination of the column vectors of 4 having as coefficients the components
in the vector x. Here is a nonsquare example in which we replace the vector x of
unknowns by a specific vector of numbers.

Write as a linear combination and then compute the product

[ 2 -3 5} _2
-1 4 -7]] 3|
L >

HISTORICALNOTE THE TERM MATRIx is first mentioned in mathematical literature in an 1850
paper of James Joseph Sylvester (1814-1897). The standard nontechnical meaning of this term is
“a place in wliich something is bred, produced, or developed.” For Sylvester, then, a matrix, which
was an “oblong arrangement of terms,” was an entity out of which one could form various square
pieces to produce determinants. These latter quantities, formed from squaie matrices, were quite
well known by this time.

James Sylvester (his original name was James Joseph) was born into a Jewish family in
London, and was to become one of the supreme aigebraists of the nineteenth century. Despite
having studied for several years at Cambridge University, he was not permitted to take his degree
there because he “professed the faith in which the founder of Christianity was educated.”
Therefore, he received his degrees from Trinity College, Dublin. In 1841 he accepted a
professorship at the University of Virginia; he remained there only a short time, however, his
horror of slavery preventing him from fitting into the academic community. In 1871 he returned
to the United States to accept the chair of mathematics at the newly opened Johns Hopkins
University. In betwezn these sojourns, he spent about 10 years as an attorney, during which time
he met Arthur Cayley (see the note on p. 3), and i5 years as Professor of Mathematics at the Royal
Military Academy, Woolwich. Sylvester was an avid poet, prefacing many of his mathematical
papers with examples of his work. His most renowned example was the “Rosalind” poem, a
400-line epic, each line of which rhymed with “Rosalind.”



38

CHAPTER 1

SOLUTION

VECTORS, MATRICES, AND LINEAR SYSTEMS

Using Eq. (5) as a guide. we find that

| B K R

Note that in Example 1, the first entry 21 of the final column vector is
computed as (—2)(2) + (5)(—3) + (8)(5), which is precisely the dot product of
' -2
the first row vector [2 —3 5] of the matrix with the column vector [ 5/.
8
Similarly, the second component —34 of our answer is the dot product of the
second row vector [—1 4 —7] with this column vector.

In a similar fashion, we see that the ith component of a column vector 4b
will be equal to the dot product of the ith row of A4 with the cohimn vector b.
We should also note from Example 1 that the number of components in a row
of 4 will have to be equal to the number of components in the column vector b
if we are to compute the product 4b.

We have illustrated how to compute a product Ab of an m X n matrix with
an n X 1 column vector. We can extend this notion to a product AB of an
m X n matrix 4 with an # X s matrix B.

The product 4B is the matrix whose jth column is the product of A4
with the jth column vector of B.

Letting b; be the jth column vector of B, we write 4B = C symbolically as

L

Ab’lblz---b,=Ab[Abz---Ab:.
T

Because B has s columns, C has s columns. The comments after Example !
indicate that the ith entry in the jth column of AB is the dot product of the ith
row of A with the jth column of B. We give a formal definition.

L

DEFINITION 1.8 Matrix Multiplication

Let A = [a;] be an m X n matrix, and let B = [b,]] be an n X s matrix.
The matrix product AB is the m X s matrix C = [¢;], where ¢; is the dot
product of the ith row vector of 4 and the jth column vecior of B.

=
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We illustrate the choice of row i from 4 and column j from B to find the
element ¢; in AB, according to Definition 1.8, by the equation

(an —a, |
. by, by; by
AB=1[c)=| % — G ||| | [,
bﬂl ' bnj bnx

Rp——

where
¢; = (ith row vector of A) - (jth column vector of B).
In summation notation. we have

C; = auby + apby + - - - + a,b,

= i ayby. ©6)
k=1

Notice again that 4B is defined only when the second size-number (the
number of columns) of 4 is the samc as the first size-number (the number of
rows) of B. The product matrix has the shape

(First size-number of 4) X (Second size-number of B).
Let Abe a2 X 3 matrix, and iet B be a 3 X 5 matrix. Find the sizes of AB and
BA, if they are defined.

Because the second size-number, 3, of 4 equals the first size-number, 3, of B,
we see that 4B is defined; it is a 2 X 5 matrix. However, B4 is not defined,
because the second size-number, 5, of B is not the same as the first
size-number, 2, of 4. =

Compute the product

3 ] 41 28]
[4 6_2} 30 1 1.
-2 3 5 -3

The product is defined, because the left-hand matrix is 2 X 3 and the
right-hand matrix is 3 X 4; the product will have size 2 x 4. The entry in the
first row and first column position of the product is obtained by taking the dot
product of the first row vector of the left-hand matrix and the first column
vector of the right-hand matrix, as follows:

(=2)(4) + (3)3) + Q)(~2) = -8 + 9 — 4 = 3.



EXAMPLE 4

The entry in the second row and third column of the product is the dot product
of the second row vector of the left-hand matrix and the third column vector of
the right-hand one:

@)+ @B+ (=2)(5)=8+6—10 =4,

and so on, through the remaining row and column positions of the product.
Eight such computations show that

[—2 3 2} 1T S s 8 9-13
4 62| 2 0 L 4T[0 4 2 i

Examples 2 and 3 show that sometimes AB is defined when BA is not. Even
if both AB and BA are defined, however, it need not be true that AB = BA:

[ Matrix multiplication is not comniutative.

Let

|62 _[o1
A—[3 5] and B—[z 5].

Compute AB and BA.

HISTORICAL NOTE MAaTRIX MULTIPLICATION originated in the composition of linear substitu- £
tions, fully explored by Carl Friedrich Gauss (1777-1855) in his Disquisitiones Arithmeticae of [
1801 in connection with his study of quadratic forms. Namely, if F = Ax? + 2Bxy + Cy?issucha J
form, then the linear substitution

x=ax' + by y=cx'+dy ® E
transforms F into a new form F' in the variables x' and y'. If a second substitution :
X =ex" +fyn yr - gxn + hyw (il)

transforms F' into a form F” in x”, y", then the composition of the substitutions, found by
replacing X', 3’ in (i) by their values in (ii), gives a substitution transforming F into F": E
x = (ae + bg)x" - (af + bh)y" y = (ce + dg)x" + (¢f + dh)y". (iii
The coefficient matrix of substitution (iii) is the product of the coefficient matrices of substitutions g
(i) and (ii). Gauss performed an analogous computation in his study of substitutions in forms in 3
three variables, which produced the rule for multiplication of 3 X 3 matrices. ]
Gauss, however, did not explicitly refer to this idea of composition as a “multiplication.”
That was done by his student Ferdinand Gotthold Eisenstein (1823—-1852), who introduced the 4
notation S X T to denote the substitution composed of S and T. About this notation Eisenstein JE
wrote, “An algorithm for calculation can be based on this; it consists of applying the usual rules for -4
the operations of muitiplication, division, and exponentiation to symbolical equations between 3§
linear systems; correct symbolical equations are always obtained, the sole consideration being that 2
the order of the factors may not be altered.”
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We zompute that

10 28 15 29

=49 na=[ 23]

Of course, for a square matrix 4, we denote 44 by 4%, 444 by A%, and so
on. It can he shown that matrix multiplication is associative; that is,

A(BC) = (4B)C

whenever the produci is defined. This is not difficult to prove from the
definition, although keeping track of subscripts can be a bit challenging. We
Icave the proof as Exercise 33, whose solution is given in the back of this text.

The n x n Identity Matrix

Let I be the n X n matrix [ay] such that a; = 1 fori=1,...,nand q;= O for
i #j. That is,

oo =
o —-o
—_—o o
coo
)—‘l
_
1

000 --- 1] _O 1]
where the large zeros above and below the diagonal in the second matrix

indicate that each entry of the matrix in those positions is 0. If A is any m X n
matrix and B is any 7 X s matrix, we can show that

A=A and IB = B.

We can understand why this is so if we think about why it is that

3l =l A-b

Because of the relations 4] = 4 and IB = B, the matrix I is called the n X n
identity matrix. It behaves tor multiplication of # X n matrices exactly as the
scalar 1 behaves for multiplication of scalars. We have one such square icentity
matrix for each integer 1, 2, 3, . . . . To keep notation simple, we denote them
allby I, ratherthan by I, I,, I, . . . . The size of I will be clear from the context.

The identity matrix is an example of a diagonal matrix—namely, a square
matrix with zero entries except possibly on the main diagonal, which extends
from the upper left corner to lower right corner.

Other Matrix Operations

Although multiplication is a very important matrix cperation for our work,
we wiil have occasion to add and subtract matrices, and to multiply a matrix
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by a scalar, in later chapters. Matrix addition, subtraction, and scalar mul-
tiplication are natural extensions of these same operations for vectors
as defined in Section 1.1; they are again performed on entries in corresponding
positions.

DEFINITION 1.9 Matrix Addition

Let A = [a;] and B = [b;] be two matrices of the same size m X n. The
sum A + B of these two matrices is the m X n matrix C = [¢;], where
C‘-j = a!! + bu.

That is, the sum of two matrices of the same size is the matrix of that
size obtained by adding corresponding entries.

Find

e

4 -

The sum is the matrix

Find
1 -3 -5 4 6
{2 4}*{ 3 7 —1}"
The sum is undefined, because the matrices are not the same size. =

Let 4 be an m X n matrix, and let O be the m X n matrix all of whose &
entries are zero. Then,

A+O0=0+4=A4.

The matrix O 1s called the m X n zero matrix; the size of such a zero matrix is
made clear by the context. =

DEFINITION 1.10 Scalar Multiplication

Let A = [a;], and let r be a scalar. The product r4 of the scalar r and the
matrix A is the matrix B = [b;] having the same size as 4, where

b; = ra;.
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,)‘——2 ]
L —
Multiplying each entry of the matrix by 2. we obtain the matrix

6l

Find

For matrices 4 and B of the same size, we define the difference 4 — B to be
A-B=4+(-1)B.

The entries in 4 — B are obtained by subtracting the entries of B from entries
in the corresponding positions in /.

If

3 -1 4 (-1 0 5]
A—{O 2_5} and B—[ 4 -2 lJ‘

find 24 — 3B.
We find that

2A—3B=[ 9 -2 _7}.

-12 10 ~13

We introduced the transpose operation to change a row vector to a column
vector, or vice versa, in Section [.!. We generalize this operation for
applicaticn to matrices, changing all the row vectors to column vectors, which
results in all the column vectors becoming row vectors.

DEFINITION 1.11 Transpose of a Matrix; Symmetric Matrix

The matrix B is the transpose of the matrix 4, written B = 47, if each

entry by in B is the same as the entry a; in 4, and conversely. If 4 is a
matrix and if 4 = A7, then the matrix 4 is symmetric.

Find A7 if
1 4 5
4= [—3 2 7]
We have
| -3l
AT =14 2|.
5 7

Notice that the rows of 4 become the columns of 47. &
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A symmetric matrix must be square. Symmetric matrices arise in some
applications, as we shall see in Chapter 8.

Fill in the missing entries in the 4 X 4 matrix

- 5 -6 8
.3
-2 1 0 4

11 -1
to make it symmetric.

Because rows must match corresponding columns, we obtain

5 -6 -2 &
-6 3 1 11
-2 1 0 4
8 11 4 -1 L]

In Example 10, note the symmetry in the main diagonal.
We have explained that we will often regard vectors in R” as column
vectors. If a and b are two column vectors in R”, the dot product a - b can be

written in terms of the transpose operation and matrix multiplication— E

namely,

bH
Strictly speaking, a™bisa 1 X 1 matrix, and its sole entry is a « b. Identifying a

1 x 1 matrix with its sole entry should cause no difficulty. The use of Eq. (7)
makes some formulas given later in the text much easier to handle.

Properties of Matrix Operations

For handv reference, we box the properties of matrix algebra and of the -
transpose operation. These properties are valid for all vectors, scalars, &
and matrices for which the indicated quantities are defined. The exercises ¢
ask for proofs of most of them. The proofs of the properties of matrix Jg
algebra not involving matrix multiplication are essentially the same as the §
proofs of the same properties presented for vector algebra in Section 1.1. 3
We would expect this because those operations are performed just on cor- J

responding entries, and every vector can be regarded as either a 1 X » or an
n X | matrix.

|

L i
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Properties of Matrix Algebra

A+B=B+4
A+B)-C=4+(B+C0)
A+0=0+4=4
rd+ B)=rd + rB
(r+s8)Ad=r4d+s4
(r5)A = r(sA)

(rA)B = A(rB) = r(4B)
A(BC) = (4B)C
IA=Aand B[ =B
AB + C)=4B + AC
(4 + B)C=AC + BC

Commutative law of addition
Associative law of addition

Identity for addition

A left distributive law

A right distributive law

Associative law of scalar multiplication
Scalars pull through

Associative law of matrix multiplication
Identity for matrix muitiplication

A left distributive law

A right distributive law

Properties of the Transpose Operation

ANT=4 Transpose of tie transpose
(4 + B)T = A" + B" Transpose of a sum
(AB)" = B'AT Transpose of a product

Prove that A(B + C) = AB + AC for any m X n matrix 4 and any n X s matrices

Band C.

Let A = [a,], B=[by] and C = [c]. Note the use of j, which runs from 1 to n, as
both the second index for entries in A4 and the first index for the entries in B
and C. Tie entry in the ith row and kth column of A(B + C) is

2, a,(b + ¢).
Jj=1

By familiar properties of real numbers, this sum is also equal to

n n n
.2 (@yby + ayep) = 2 ayby + 2 Q;Ci
J=1 J J=1

which we recognize as the sum of the entries in the ith row and kth columns of
the matrices 4B and AC. This completes the proof. =



