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Liouville's theorem complex analysis

Every bounded , entire function f(z) is constant
Suppose a and b are two points on the complex plane.
Take a as the center of the circle, r is the radius

Pack b inside the circle

F0) - f@y = —§ 1D 45 {12 4,
“mf - 1b-z e s
me (z—b)(z y[(2)dz

F®) - F@ = 2mi 7€(z—b)(2—a)
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REELA ZEF (Fundamental Theorem of
Algebra)

Apoly.equnP(z) = agx™ + a;x™ 1 + -+ + a,_1x + a, = 0 where ay,
€Candk =0,1,..,n, ap #0,n=>1hasasol'ninC
In other words, G is algebraically closed.
<Proof by contradiction>

Suppose that [P(z) has not sol’n.

ie. f(z) = ?IS entire function and bounded

According to Liouville's theorem ,f (z)is constant
So [(z) is also constant. (3€)

p is poly.isn’t constant
.".[’(z) has sol’n
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proof of Lindemann-Weierstrass theorem

For any non-zero natural number n and any algebraic numbers a4, ..., a,, if the set
{ai, ..., ay}islinearly independent over Q, then {e** ,..., e% }is algebraically

independent over Q



The Lindemann-Weierstrass theorem generalizes both

these two statements and their proofs

If a; .. a, are algebraic and distinct, and if ;... f, are algebraic and non-zero,
then Bie*t 4+ f,e% #0
Note that the facts that e and it are transcendental follow trivially from this theorem.
For example:If e were algebraic, then e is the root of a poly. Y. B;x! where §; € Q in
contradiction to the theorem.
The following construct is used in all three proofs.
Suppose f(x)is areal polynomial, and let

t
I(t) = j et X f(x)dx
0

Using I.B.P we get

t t t
10 = (—e£G0) | § + [ eF'G) dx = e'f(0) = £ + + [ ef'(x)
0 0

Continuing, and integrating by parts a total of m=deg f times ,we get

10 =t Y O = ) fO©)- (1)
2102

Where fO(x) is the jt" derivative of f

The proof follows the same general lines as above, but there are additional
complexities introduced by the arbitrary «;. In the proof of the transcendality of it
we were able to use facts about the relationship of the exponents in the proof; no
such relationship is available to us in this more general setting

Again start by supposing f; e%t + - B, e% =0+ (4)

where the a;, [; are as given

Claim we can assume, without loss of generality, that f5; € Z.

For if not, take all the expressions formed by substituting for one or more of the

Bi one of its conjugates, and multiply those by the equation above. The result is a new expression of the
a;), but where the coefficients are rational numbers. Clear denominators, proving
the claim.

Next, claim we can assume that the «; are a complete set of conjugates, and that if
a; ,ajare conjugates, then B; = f;. To see this, choose an irreducible integral
polynomial having «; ... @, asroots;let a,.,.. ay be the remaining roots, and
define f,41=... Bn = 0.Then clearly we have

[ oo+ -pyemm =

OESN



(Note the similarity with the proof for m). There are N! factors in this product, so
expanding the product, it is a sum of terms of the form ef1®1++hnay

with integral coefficients, and hy + -+ hy = N!.

Clearly the set of all such exponents forms a complete set of conjugates.

By symmetry considerations, we see that the coefficients of two conjugate terms are
equal.

Also, the product is not identically zero. To see this, consider the term in the product
formed by multiplying together, from each factor, the nonzero terms with the largest
exponents in the lexicographic order on C.

Since the a; are unique (because the polynomial is irreducible), there is only one
term with this largest exponent, and it has a nonzero coefficient by construction.
Finally, order the terms so that the conjugates of a particular «; appear together.
That is, for the remainder of the proof we may assume that

et + - Bpe =0 with the B;€Z, and that there are integers

0=ny, <ny <:+-<n,. =n chosensothat, foreach 0 <t<n

we have dy, 41, ... Ay, formacomplete set of conjugatesf,, 11 = P42 = - =

Bnt+1

Now since «;, B; are algebraic, we can

np ((x—ay)...(x—ap))?P 1
(x—ay) ’

IA

choose t such that 4, p,are algebraic integers. Let f; =1

i <n where again p is a (large) prime.

We will develop contradictory estimates for |J; ... J,|,where J; = B11;(a;) +

- Bnli(ay),1 < i < nand I;is the integral associated with f;, as above (see (1))
Using equations (1) and (4)

we see that

n
> Bl
k=1
np-—1 n

:i By ek z fl-(j)(O) —Z ﬁknpz_: fi(j)(“k)
=0

k=1 j=0 k=1

np—1

= cz A O) (Z ﬁke“k) —i pX IAC)

k=1 j=0

np—1np-1
- ) G @)
j=0 j=0

Arguing similarly to the foregoing proofs, we see that fl-(j) (ay) is an algebraic



integer divisible by p! unless j=p-1 and k=i. In this particular case, we have that
n
A CORTLICERI [ (G
k=1
and so again, if p is large enough, this is divisible by (p—1)! but not by p!. Thus
J; is a nonzero algebraic integer divisible by (p-1)!but not by p!.
As before, we can prove that J; # 0.
J; can be written as follows:
np—1r—1

Ji== DD Bura (i ) @nr + -+ gy

j=0 t=0
Note that by construction f;(x) can be written as a polynomial whose coefficients
are polynomials in «;, and the integral coefficients of those polynomials are integers
independent of i
Thus, noting that the aiai form a complete set of conjugates and using the fundamental theorem on syn
J;is in fact a rational number. But it is an algebraic integer, hence an integer. Thus
Ji, .Jn € Z. and itis divisible by ((p — 1"
Thus |J; ...Jn| = (p — 1)!. But the same estimate as in the previous proofs shows

that for each |

sl = D 1Bl (@)l < ) 1Bectel el F(la )
k=1 k=1

which as before is
< cP for some sufficiently large c. These estimates are again in contradiction, proving the theorem.

lexicographic order

Let A be a set equipped with total order <, and let A" = A:--Abe the n-fold
Cartesian product of A.

Then the lexicographic order < on A™is defined as follows:

If a=(ay,..,a,) €A™, thena <b if a; < by or

a1=b1

ak=bk

A1 < bgyq forsomek =1,...,n—1

Corollary(*) If a # 0 is algebraic, then e'® is transcendental.
<pf>



If it were algebraic, say

Then we have
el® —Be® =0

in contradiction to the above theorem since a # 0
Corollary If a +# Ois algebraic, then cos a and sin a is transcendental.
<pf>
Recall that cosa + isina = e'®, which is transecendental.
If either cosa or sina were algebraic, then the other would be as well
(and thus their sum would be)
Since sin?(a) + cos?(a) =1
Hence both cosa and sina are transcendental.
Corollary If a > 0 is algebraic with a # 1, then In a is transcendental.
<pf>

If f=Ihea, thenef =«
By Corollary(*) . Since a is algebraic,  can't be .

Statement of the Problem

Let a be areal algebraic number . In the simplest case , the central problem of this
chapter can be stated as follows:
Determine how small
5 = 5((1;3) = ja-2
q q
Can be for p € Z, geN. In particular, one might want to
a)find out how much is possible ,i.e., how close rational numbers can getto « ;
or
b)Find out how much is impossible ,i.e., find a lower bound for §
Since Q is everywhere dense in R , it follows that for any 6eR

(in particular, for any real OeA)

And forany € > 0 there are infinitely many rational numbers s
Such that
|9 - B| <e&
q

Thus questions(a) and (b) are trivial unless we impose some additional conditions . But
these questions become nontrivial for irrational a if we bound q from above and

refine (a) and (b) as follows:



A)
Find a positive non-increasing function @(x) = @(x, ), xeN,such that the inequality

@ =21 < 9@
q
Has infinitely many sol’n (p,q) with p€Z, geN
B)
Find a positive non-increasing functiony(x) = ¥ (x, a), xeN,such that the inequality

p
| qI = Y(q)

Holds for all peZ, geN with S # a (or at least for all such that with q = q,).

Approximation of Algebraic Numbers

<Lemma>

It is easy to get complete answers to questions(A) and (B) for rational « .

let @ =2 ,ae’ beN,g * E; then
b b q

1 _lag—bpl | P
—<—=|a .

bq bq q

Since (a,b)=1,by assumption , it follows that the equation ax-by=1 has infinitely many

1

sol’'ns x,yeZ , and so we can take ¢(x) = Y(x) = —

These choices are best possible.

<Def>

Let BeR, and let w(x) > 0 be a function on N that approaches zero x — oo.
We say that & has a rational approximation of orderw(q) if for some

c= C(H, a)(x)) the inequality
0< |0 —§| < cw(q)
Holds for infinitely many pair s (p,q) with  pe€Z, geN
Thm(*)
The inequality
1
o<lo-2 <L
qal g
Has infinitely many sol’ns for any irrational real number 6 .

That is, any irrational real number has a rational approximation of order g~2



Quadratic Irrationalities

Let aeA,deg a = 2.There exists a constant ¢ = c(a) such that
c
‘a —E’ >cq7? =
q q
Thus by thm(*) , a real quadratic irrationality has a rational approximation of order
q‘2 ;but, by Quadratic Irrationalities , it has no higher order rational

approximation.

3 q 1
V2—-3|>—— VvpeENand3ige Z
p 10}93 p an q

Answer
Obiviously whenli/f - §| >1

Therefore , we assume that

i/?—§| <1
6" - &= 1(v2-2) (Ve 32 () + (B) )

- ((2-9) (-2 (22

3V4)|
< (i/i—%)|(1+4+56) ------ (use V2 < 1.26)
<10l32-E
q
1 |2p3—g3 , 3
ES p 3q =|(\/§)3—<§) |

Liouville‘s theorem Ft & F % E > %EME@TE@@%&@%@%&%%E@%@ °

Liouville’s thm.

Let x be an irrational number that is algebraic of degree n.



then there exists a constant ¢ > 0 (which can depend on x) such that

|x —§| = qc—n For every pairp,q € Zwithq # 0

Proof

Let ry, 1y, -1 be the rational roots of a polynomial P of degree n that has x as a rooSince x is irr
it does not equal any r;
Let ¢;>0 be the minimum of |x-1;|

If there are 1; » letcy = 1.

Now let a=§ where a & {ry, 1y, 1%}

Then:
P(a)=#0

1
|P(a)| = Fas P(a) is a multiple of qin

|P(x) — P(a)| > qinbecause P(x)=0

Suppose

n

P(x) = Z agx”

k=0

Then

P(x) —P(a) = Z apx® — ) apak

n
k=0 k=0

n

= ) ap(x* —a”)
2.

k=0



Case L:If|[x —a| < 1,a & {r;, 1y, - 1.}, then
la| — |x| < |x — af
la] —|x] <1
la] < |x|+1
Therefore...

n k-1
IPCO = P(@] < lx—al ) layl ) 13+ -iad
k=1 =0

n k-1
<l —al Y lagl ) 1+l + D
k=1 i=0

n k-1 | |+ 1 i
X
< v —al Y laprkt ) fpk? (T> |
k=1 =0
n k-1 1
< v —al Y lapd ) [k 1+ )]
k=1 i=0

k

1
k=1 (1+ :

%)~ 1
< |x—«af Zlakxk|(<1 +—) -1
k=1 X
n
< lr—al ) lal((xl + 1)* = x1%)
k=1
To summarize:

|P(x) — P(a)| < |x — alcy
Where:

= ) lagl((x] + D = [x)
k=1

So for such ¢ :

g |P(x) —P(a)] S 1
Cx Can
Case 2:1If |x — a| >1,a ¢ {r,nr, 1} then:

|x = af

1
|x—a|>12$



Case 3:If a € {ry, 1y, -+ 1}, then:

€1
x—al|=z¢q 2
1
— ix—al<La ¢{r,mn 1l
Cx
€= 1:|x—a|>1,a ¢ {r,r, 1}
k C @ E{rlirZ!'”rk}
Then:
p ¢ p
x——|=— for all —.
| ql —q" / q
] . l
Liouville‘s Number
w 1
* = D=1 gom
<pf>
By Comparing test
L < ! k=12
10k = 10k~ 77
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Hence Y7y Tgu LS convergent series

< =P_n=zi
"oy £ 10%

qn = 10m™
on the other hand

—i 1< ! (1+1+1+ )
N 10%" ~ 10m+1)! 10 100

k=n+1

10 1 10 1 1 1

| Pn
X — —
an

=—X = X <
9 " 10+ 9 x 10™ " (10n)n < (10™)™ (g™

choose s, =n

x is transcendental number
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