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Algebraic Numbers are Countable

1. RE B, BnREBGEZIRT (deg(p) = n) &S - 1P, F I EEEINRYERSY (f: B, - N)

flax™+ an_x™ 1+ +ax+ ay) = 2/(@)3f (@55 @) ... p(n + 1)f@)  (x)
Hohp, B EEHRE T —Dbijection(e.g. p(n) B EnBEE)
fLeXEHEIEEEHE—Dbiection (e.g@n=>0>f(n)=2n> En<0>f(n)=-2n-1
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Liouville's theorem complex analysis

» Fvery bounded , entire function f(z) is constant
Suppose a and b are two points on the complex plane.

Take a as the center of the circle, ris the radius

yA

Pack b inside the circle

f@ 12

Z—b 2m Z—a

f(b) - f()—

1 1 1 3
2_m <Z b_z—a>f(z) “

2m?g (z — b)(z o/ (#)dz




f(2)
b)(z — a)

s 211 jg (z —

|z—al =71

r
z=bl=lz—a+a-blzlz—al-la=bl=r—la=bl 27

Sb=g f(2)
()~ F(@)] = |2m.| 1§ L2 —a

|b—a|

f (z — b)(z —a) dz|, f is bounded

2 ()
— TCY - ( *
2n Gr




2|b —a|lM

fb) = fla) = (») =

r
Lefr > ocoweget f(b)—f(a) =0
=> f(z) is constant




REE KT (Fundamental Theorem of
Algebra)

®» Apoly.equnP(z) = agx™ + a;x" 1 +--+a,_1x+a, =0wherea, € Cand k =
0,1,..,n, ap #0,n>1hasasol'ninC

® |n other words , C is algebraically closed.

<Proof by contradiction>

Suppose that P(z) has not sol'n.

ie f(z) = ﬁw entire function and bounded

According to Liouville's theorem ,f(z)is constant
SO P(z) is also constant. (3€)

p is poly.isn't constant

..IP(z) has sol'n
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oroof of Lindemann-
Welerstrass theorem

For any non-zero natural number n and any algebraic numbers a,
the set{a,, ..., a,} is linearly independent over Q, then {e% , . . .,
algebraically independent over Q



The Lindemann-Welerstrass theorem generalizes both
these two statements and their proofs

7 @ .t ClisCliCEIoel € CIRCLeISHlnG & Claekli 55 . /5 Clie Clgleloidle Cinel Mici=Zefe);

AIAI S E qpono b (@0 oo ()

Note that the facts that e and 1 are tfranscendental follow trivially from this

theorem.

For example:lf e were algebraic , then e is the root of a poly.Y., f;x! where 5; € Q

In contradiction to the theorem.



The following construct is used in all three proofs.
Suppose f(x)is a real polynomial, and let

t
I(t) = j et~ F(x)dx
0
Using I.B.P we get

t L
10 = (=e"*f ) | § + | F/() dx = e£(0) = £ + + [ e*'x) d
0 0

Continuing, and integrating by parts a total of m=deg f times .we get
m m

@ =et) OO =) OO~ )

7=0 7=0
Where fU)(x) is the jt" derivative of f



The proof follows the same general lines as above, but there are additional
complexities infroduced by the arbitrary «;. In the proof of the
transcendality of m we were able to use facts about the relationship of the
exponents in the proof; no such relationship is available to us in this more

general setting
Again start by supposing f; e%t + - B, e =0---(4)

where the a;, B; Are Qs given



Claim we can assume, without loss of generality, that g; € Z.

For if not, take all the expressions formed by substituting for one or more of
the B; one of its conjugates, and multiply those by the equation above.
The result is a new expression of the same form (with different «;), but
where the coefficients are rational numbers. Clear denominators, proving

the claim.



Next, claim we can assume that the a; are a complete set of conjugates,
and fhatiie; .aaie conjugales ihen =5, Torsee fhis,choosean
llicdUe|plefificsliclipelyEnernicilicldncie o aiceisilcia it w Sloeiine

remaining roots, and define #,..-... B, = 0.Then clearly we have

1_[(,31 e ol oo By e%(N)) =0

OESN



(Note the similarity with the proof for ). There are NI factors in this product,

so expanding the product, it is a sum of terms of the form ef1®1t++hnan

with integral coefficients, and hy + -+ + hyy = N\.

Clearly the set of dll such exponents forms a complete set of conjugates.

By symmetry considerations, we see that the coefficients of two conjugate

terms are equal.



Also, the product is not identically zero. To see this, consider the ferm in the
product formed by multiplying together, from each factor, the nonzero

terms with the largest exponents in the lexicographic order on C.

Since the a; are unique (because the polynomial is ireducible), there is
only one term with this largest exponent, and it has a nonzero coefficient

by construction.



Finally, order the terms so that the conjugates of a partficular a; appear together.

That is, for the remainder of the proof we may assume that
B, e* + - B, e*n = 0 with the B;eZ, and that there are integers

Sy i = o = — i CeNEEse el o ceeln F= 1 =

WS OIS 2 i1y oo 0, VO 0 COAIDIGIES S8 O CORNUC OIS v = [0 np = o0 = 5



Now since a;, §; are algebraic, we can choose ¢ such thatig,, ig.are

np (Ol Oa ) 1E
(x—a;)

algebraic integers. Let f; =« ,1<i<nwhereagainpisa

(large) prime.
We will develop contradictory estimates for |J; ... J,|.where J; = B1;(a;) +

=0 o = s aide | S RiE R BIE cliaBesSS eelelic clvillinF - asta o eilseciE )

Using equations (1) and (4)



we see that

np 1np 1

Bifi” (@)
Jj=0
S, we see ’rho’rf(f)(ak) is an algebraic
k=i. In this particular case, we have that

=0

Arguing similarly fo the foregoing proof

o)
integer divisible by p! unless j=p—1 and



[ CORTLICESV] [ [CTE AL
k=1

and so again, if p is large enough, this is divisible by (p—1)! but not by pl. Thus
Ji Is a nonzero algebraic integer divisible by (p—1)lbut not by pl.

As before, we can prove that J; # 0.

J; can be written as follows:
pe=lee=sk

=-) Zﬁntﬂm (D @ngrs + -+ Cngyy

= =0



Note that by construction f;(x) can be writfen as a polynomial whose
coefficients

are polynomials in a;, and the integral coefficients of those polynomials are
integers independent of i

Thus, noting that the aiai form a complete set of conjugates and using the
fundamental theorem on symmetric polynomials as in the previous proof, we
see that the product of the J;is in fact a rational number. But it is an algebraic
IfiEcer aenee anlaiccernvs 7 | "e 7 cineiisiclids pleioyaipEs TS



Thus | J; ...J,| = (p— 1)}. BUl The same esiimatle as in the previous proofs
shows that for each |

1= ) 1Bl @Ol @) < ) 1Bea] e 1Fy(la )
k=1 k=1

which as before is < ¢P for some sufficiently large c. These estimates are
again in contradiction, proving the theorem.



lexicographic order

Let A be a set equipped with total order <, and let A™ = 4---A be the
n-fold Cartesian product of A.
Then the lexicographic order < on A"is defined as follows:

Ita=(a;, @ )eA: thena = blilka; =b, o
a1=b1

Ay = bk
= b orsomleic= oo = |



Corollary(*) If a # 0is algebraic, then e'® is franscendental.
<pf>
If it were algebraic, say

Then we have
el el —0)

In contradiction to the above theorem since a # 0



Corollary If a + 0Ois algebraic, then cos a and sin ais franscendental.
<pf>

Recall that cos a + isin a = e'®, which is transecendental.

If either cos a or sina were algebraic ,then the other would be as well
(and thus their sum would be)

Since sin?(a) + cos?(a) = 1

Hence both cosa and sina are transcendental .



Corollary If a > 0 is algebraic with a =1, then Ina is
iranscendental.

<pf>
i —io thenel — @

By Corollary(*) . Since a is algebraic, 8 can't be .
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Statement of the Problem

Let a be areal algebraic number . In the simplest case , the central problem of
this chapter can be stated as follows:

5=5<a;£>= @ -2
q q

Can be for p € Z, geN. In particular, one might want to

Determine how small

a)find out how much is possible ,i.e., how close rational numbers can get to « ;
or

b)Find out how much is impossible ,i.e., find a lower bound for §




Since Qs everywhere dense in R, it follows that for any
feR

(In particular, for any real 8eA)

And for any € >
0 there are infinitely many rational numbers P

q
Such that

H—B < €

q

Thus questions(a) and (b) are trivial unless we impose
some additional conditions . But these questions
become nontrivial for irrational a if we bound g from
above and refine (a) and (b) as follows:




A

Find a positive non-increasing function ¢(x) = @(x, @), xeN,such
that the inequality

p
|C¥—a| < ¢(q)

Has infinitely many sol'n (p,q) with peZ, geN
B)

ind a positive non-increasing functiony (x) = Y(x, a), xeN,such
at the inequality

p
| q|z¢<q>

Holds for all peZ, geN with S #+ a (or at least for all such that with q =



Approximation of Algebraic Numbers

<Lemma>

It is easy to get complete answers to questions(A) and (B) for rational « .
letaq =2 o=/ beN,2 +* B; then

b b q
p

q

Since (a,b)=1,by assumption , it follows that the equation ax-by=1 has infinitely

1

many sol’'ns x, yeZ , and so we can take ¢(x) = Y (x) = —.

1 e
- lag — bpl| _
bq bq

These choices are best possible.




<Def>

Let 6eR , and let w(x) >
0 be a function on N that approaches zero x — co.

We say that 8 has a rational approximation of orderw(q) if for
some
c = c(9, w(x)) the inequality

0< H—S < cw(q)

Holds for infinitely many pair s (p.q) with pe€Z, geN



Thm(*)

The inequality

D 1
60 —— = —

q q
Has infinitely many sol’'ns for any irrational real number 6 .

0<

That is, any irrational real number has a rational approximation of order g2




Quadratic Irrationalities

Let aeA,deg a = 2.There exists a constant ¢ = c(a) such that

>cq? = % obvious if Im(a) # 0

1%
a__
q

Thus by thm(*) , a real quadratic irrationality has a rational approximation of
order g~?;but, by Quadratic Irrationalities , it has no higher order rationall
approximation.




Vp € Nand 3q € Z

1
10p3’

>

Al

{0 0
4 5
c—/ o




Answer

= Obiviously when|3{/7 - §| > 1

» Therefore , we assume that

V22 <1
q

- |(W)3—<§)3|=I(W—£)(W+V(E) (§)Z>'
(i/_——)( __) _3\/—(\/——§)+3§/Z)|

< (V—S)‘(1+4+56) ------ (use V2 < 1.26)
<10 i/i—g‘
1 2p —q 3
<t (2)

Liouville's theoremFt 2EEE - ¢E1use$§;ﬂai\f§%zﬂﬁf§§ﬂ§%E@%ﬁEl :




Liouville's thm.

Let x be an irrational number that is algebraic of degree n.

then there exists a constant ¢ > 0 (which can depend on x) such that

‘x —g‘ = qin For every pairp,q € Zwith q + 0




Proof

Let 1y, 1y, 1 .be the rational roots of a polynomial P of degree n that has x as a rooSince
X is irrafional

it does not equal any r;
Let ¢;>0 be the minimum of | x—r; |

If there are r; » letc; = 1.

Now let a :g where a & {ry, 13, = 1}

Then:

P(a)+#0

1 1
|IP(a)| = — as P(a) is a mulfiple of —
q

1
|IP(x) — P(a)| = q—nbecause P(x)=0




Suppose

Then

k=0
n n
P(x) — P(o) = z apx’® — z az o’
= k=0
= Z ay (x* — o)



Therefore...

k=1

=(x—ocz 1=ty

(=0

= zak(x—a)kz_:lxk

Case 1:If [x —a| < 1,a & {ry, 1y, - 11}, then
la| — [x| < |x — af
lal — [x] < 1
la] < x| +1



P(x) - P(a>|<|x—a|2|ak|2|xk“ |

< |x—a|2|ak|2|xk IR
|x|+1
|x—a|z|akxk 1|2|xk 1( |
< |x—aq Z|akxk‘1| z | x*=1(1 +;)i|
k=1 i=0




N
< |x —q zn:|akxk_1| (1 +§1) A
=1 (1+5)-1

n k
. 1
< |x—a|Z|akx |(<1 +§> —1)
k=1

<lx—al ) lal((lx] + DF = [x])
k=1

To summarize:

[P(x) = P(o)| < |x — alcy




Where:

e = ) lal ((x] + 1 = [x]¥)
k=1

So forsucha:
P —P(a)l _ 1

n
Cyx Cxq

lx — a| >

Case 2:1f |x — a| > 1,a & {r, 1y, 1.} then:

1
|x—a|>12q—n




Theén:

Case 3:1f a € {ry, 1y, - 17}, then:
c
|x — C}fl = C1 = _11,1

1

—x—al <1, a &{r,r,

X

1l:lx—al>1a &{r,r,-

€1 ¢+ E{1, T, T

p
x__

C p
i =— for all —.

q q




Liouville's Number

1
O
e X = Zk=1 101’1!

<pf>
By Comparing test




dn = 10™
on the other hand

1|
Z 107 = o<n+1>'(1+1_0+ﬁ+ )

k n+1

10 10 1 p 1 . 1
9 1o<n+1>! "9 x 10 (10"!)" (10™)™ (g )™

choose s, =n
x is transcendental number
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