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In a team of guards, each is assigned a different positive integer. For any two guards,
the ratio of the two numbers assigned to them is at least 3:1. A guard assigned the
number n is on duty for n days in a row, off duty for n days in a row, back on duty
for n days in a row, and so on. The guards need not start their duties on the same
day. Is it possible that on any day, at least one in such a team of guards is on duty?
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Let the guards G4, Go, ..., G, and let n; > n,>..>n, = 1 be the numbers assigned
to them. In fact, n; = 3n;, 4 for 1< i< k. There is an interval of 3n, days during
which G is not on duty. Within this interval, there is a subinterval of n, >3n5 days
during which G, is not on duty either. Repeating this argument until we reach Gy,
we will have an interval of n; days in which none of the guards are on duty.
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One hundred points are marked inside a circle, with no three in a line. Prove that it

is possible to connect the points in pairs such that all fifty lines intersect one

another inside the circle.




Q:

SNRIERH - BH  TAEEE ay, ay, .., (PR HRIEQI RS X -
BE—B( (((x%+ ag) *+ap) 2+++) 2+a™ 1) 2+a, BILIR2n — 1EERR o

Let n be a positive integer. Prove that there exist integers a4, a,, ..., a,, such that for
any integer x, the numberis (--- (((x%+ ay) 2+ay) 2+-+-) 2+a™ 1) 2+q,, divisible by
2n — 1.
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Alex marked one point on each of the six interior faces of a hollow unit cube. Then
he connected by strings any two marked points on adjacent faces. Prove that the

total length of these strings is at least 6v/2.
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Let [ be a tangent to the incircle of triangle ABC. Let [ a, [ b and [ c be the respective
images of [ under reflection across the exterior bisector of /A, /B and ZC. Prove
that the triangle formed by these lines is congruent to ABC.
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We attempt to cover the plane with an infinite sequence of rectangles, overlapping

allowed.

(a) Is the task always possible if the area of the nth rectangle is n? for each n?

(b) Is the task always possible if each rectangle is a square, and for any number N,
there exist squares with total area greater than N?
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Konstantin has a pile of 100 pebbles. In each move, he chooses a pile and splits it

into two smaller ones until he gets 100 piles each with a single pebble.

(a) Prove that at some point, there are 30 piles containing a total of exactly 60
pebbles.

(b) Prove that at some point, there are 20 piles containing a total of exactly 60
pebbles.

(c) Prove that Konstantin may proceed in such a way that at no
piles containing a total of exactly 60 pebbles.




