Perfect Matching of 2k
Perfect Matching of (2k), concordant, discordant, dissident的統計量 (back to Data page)
定義:
- Perfect Matching of [2n]:
A set partition of [2n] with blocks (disjoint nonempty subsets) of size exactly 2. Let $\mathit{M}_{2n}$ be the set of matchings of [2n], and let $M \in \mathit{M}_{2n}$. The standard form of $M$ is a list of blocks $\{(i_1, j_1), (i_2, j_2), ..., (i_n, j_n) \}$ such that $i_r < j_r$ for all $1\leq r\leq n$ and $1=i_1 < i_2 < ... < i_n$.
- $M=\{(m_1, M_1)(m_2, M_2)...(m_n, M_n)\mid m_1< m_2 <...< m_n\}$
- concordant (cc) =
#$\{i \mid m_i = m_{i-1}+1 \mbox{ and } M_i > M_{i-1}\}$
- discordant (dc) =
#$\{i \mid m_i = m_{i-1}+1 \mbox{ and } M_i < M_{i-1}\}$
- dissident (ds) =
#$\{i \mid m_i > m_{i-1}+1 \}$
The statistic of [cc, dc, ds] seems equal to the statistic of [n-1-r, n-1-s, n-1-t], where it is the [asc-1, des-1, plat-1] for the Stirling Permutation
link
Google Colab
[r, s, t] = [n-1-cc, n-1-dc, n-1-ds]
n | total | [cc, dc, ds] | 個數 | [r, s, t] |
2 |
3 |
[0, 0, 1] | 1 | [1, 1, 0] |
[0, 1, 0] | 1 | [1, 0, 1] |
[1, 0, 0] | 1 | [0, 1, 1] |
3 |
15 |
[0, 0, 2] | 1 | [2, 2, 0] |
[0, 1, 1] | 4 | [2, 1, 1] |
[0, 2, 0] | 1 | [2, 0, 2] |
[1, 0, 1] | 4 | [1, 2, 1] |
[1, 1, 0] | 4 | [1, 1, 2] |
[2, 0, 0] | 1 | [0, 2, 2] |
4 |
105 |
[0, 0, 3] | 1 | [3, 3, 0] |
[0, 1, 2] | 11 | [3, 2, 1] |
[0, 2, 1] | 11 | [3, 1, 2] |
[0, 3, 0] | 1 | [3, 0, 3] |
[1, 0, 2] | 11 | [2, 3, 1] |
[1, 1, 1] | 36 | [2, 2, 2] |
[1, 2, 0] | 11 | [2, 1, 3] |
[2, 0, 1] | 11 | [1, 3, 2] |
[2, 1, 0] | 11 | [1, 2, 3] |
[3, 0, 0] | 1 | [0, 3, 3] |
5 |
945 |
[0, 0, 4] | 1 | [4, 4, 0] |
[0, 1, 3] | 26 | [4, 3, 1] |
[0, 2, 2] | 66 | [4, 2, 2] |
[0, 3, 1] | 26 | [4, 1, 3] |
[0, 4, 0] | 1 | [4, 0, 4] |
[1, 0, 3] | 26 | [3, 4, 1] |
[1, 1, 2] | 196 | [3, 3, 2] |
[1, 2, 1] | 196 | [3, 2, 3] |
[1, 3, 0] | 26 | [3, 1, 4] |
[2, 0, 2] | 66 | [2, 4, 2] |
[2, 1, 1] | 196 | [2, 3, 3] |
[2, 2, 0] | 66 | [2, 2, 4] |
[3, 0, 1] | 26 | [1, 4, 3] |
[3, 1, 0] | 26 | [1, 3, 4] |
[4, 0, 0] | 1 | [0, 4, 4] |
6 |
10395 |
[0, 0, 5] | 1 | [5, 5, 0] |
[0, 1, 4] | 57 | [5, 4, 1] |
[0, 2, 3] | 302 | [5, 3, 2] |
[0, 3, 2] | 302 | [5, 2, 3] |
[0, 4, 1] | 57 | [5, 1, 4] |
[0, 5, 0] | 1 | [5, 0, 5] |
[1, 0, 4] | 57 | [4, 5, 1] |
[1, 1, 3] | 848 | [4, 4, 2] |
[1, 2, 2] | 1898 | [4, 3, 3] |
[1, 3, 1] | 848 | [4, 2, 4] |
[1, 4, 0] | 57 | [4, 1, 5] |
[2, 0, 3] | 302 | [3, 5, 2] |
[2, 1, 2] | 1898 | [3, 4, 3] |
[2, 2, 1] | 1898 | [3, 3, 4] |
[2, 3, 0] | 302 | [3, 2, 5] |
[3, 0, 2] | 302 | [2, 5, 3] |
[3, 1, 1] | 848 | [2, 4, 4] |
[3, 2, 0] | 302 | [2, 3, 5] |
[4, 0, 1] | 57 | [1, 5, 4] |
[4, 1, 0] | 57 | [1, 4, 5] |
[5, 0, 0] | 1 | [0, 5, 5] |
7 |
135135 |
[0, 0, 6] | 1 | [6, 6, 0] |
[0, 1, 5] | 120 | [6, 5, 1] |
[0, 2, 4] | 1191 | [6, 4, 2] |
[0, 3, 3] | 2416 | [6, 3, 3] |
[0, 4, 2] | 1191 | [6, 2, 4] |
[0, 5, 1] | 120 | [6, 1, 5] |
[0, 6, 0] | 1 | [6, 0, 6] |
[1, 0, 5] | 120 | [5, 6, 1] |
[1, 1, 4] | 3228 | [5, 5, 2] |
[1, 2, 3] | 13644 | [5, 4, 3] |
[1, 3, 2] | 13644 | [5, 3, 4] |
[1, 4, 1] | 3228 | [5, 2, 5] |
[1, 5, 0] | 120 | [5, 1, 6] |
[2, 0, 4] | 1191 | [4, 6, 2] |
[2, 1, 3] | 13644 | [4, 5, 3] |
[2, 2, 2] | 28470 | [4, 4, 4] |
[2, 3, 1] | 13644 | [4, 3, 5] |
[2, 4, 0] | 1191 | [4, 2, 6] |
[3, 0, 3] | 2416 | [3, 6, 3] |
[3, 1, 2] | 13644 | [3, 5, 4] |
[3, 2, 1] | 13644 | [3, 4, 5] |
[3, 3, 0] | 2416 | [3, 3, 6] |
[4, 0, 2] | 1191 | [2, 6, 4] |
[4, 1, 1] | 3228 | [2, 5, 5] |
[4, 2, 0] | 1191 | [2, 4, 6] |
[5, 0, 1] | 120 | [1, 6, 5] |
[5, 1, 0] | 120 | [1, 5, 6] |
[6, 0, 0] | 1 | [0, 6, 6] |