Stirling Permutation

Stirling Permutation, asc, des, plat 的統計量 (back to Data page)

定義:


The statistic of [cc, dc, ds] seems equal to the statistic of [n-1-r, n-1-s, n-1-t], where it is the [asc-1, des-1, plat-1] for the Stirling Permutation
link

Google Colab

目錄:


Grammar result

$ D0 = y\\ $

$ D1 = x y z\\ $

$ D2 = x^{2} y^{2} z + x^{2} y z^{2} + x y^{2} z^{2}\\ $

$ D3 = x^{3} y^{3} z + 4 x^{3} y^{2} z^{2} + x^{3} y z^{3} + 4 x^{2} y^{3} z^{2} + 4 x^{2} y^{2} z^{3} + x y^{3} z^{3}\\ $

$ D4 = x^{4} y^{4} z + 11 x^{4} y^{3} z^{2} + 11 x^{4} y^{2} z^{3} + x^{4} y z^{4} + 11 x^{3} y^{4} z^{2} + 36 x^{3} y^{3} z^{3} + 11 x^{3} y^{2} z^{4} + 11 x^{2} y^{4} z^{3} + 11 x^{2} y^{3} z^{4} + x y^{4} z^{4}\\ $

$ D5 = x^{5} y^{5} z + 26 x^{5} y^{4} z^{2} + 66 x^{5} y^{3} z^{3} + 26 x^{5} y^{2} z^{4} + x^{5} y z^{5} + 26 x^{4} y^{5} z^{2} + 196 x^{4} y^{4} z^{3} + 196 x^{4} y^{3} z^{4} + 26 x^{4} y^{2} z^{5} + 66 x^{3} y^{5} z^{3} + 196 x^{3} y^{4} z^{4} + 66 x^{3} y^{3} z^{5} + 26 x^{2} y^{5} z^{4} + 26 x^{2} y^{4} z^{5} + x y^{5} z^{5}\\ $

$ D6 = x^{6} y^{6} z + 57 x^{6} y^{5} z^{2} + 302 x^{6} y^{4} z^{3} + 302 x^{6} y^{3} z^{4} + 57 x^{6} y^{2} z^{5} + x^{6} y z^{6} + 57 x^{5} y^{6} z^{2} + 848 x^{5} y^{5} z^{3} + 1898 x^{5} y^{4} z^{4} + 848 x^{5} y^{3} z^{5} + 57 x^{5} y^{2} z^{6} + 302 x^{4} y^{6} z^{3} + 1898 x^{4} y^{5} z^{4} + 1898 x^{4} y^{4} z^{5} + 302 x^{4} y^{3} z^{6} + 302 x^{3} y^{6} z^{4} + 848 x^{3} y^{5} z^{5} + 302 x^{3} y^{4} z^{6} + 57 x^{2} y^{6} z^{5} + 57 x^{2} y^{5} z^{6} + x y^{6} z^{6}\\ $

$ D7 = x^{7} y^{7} z + 120 x^{7} y^{6} z^{2} + 1191 x^{7} y^{5} z^{3} + 2416 x^{7} y^{4} z^{4} + 1191 x^{7} y^{3} z^{5} + 120 x^{7} y^{2} z^{6} + x^{7} y z^{7} + 120 x^{6} y^{7} z^{2} + 3228 x^{6} y^{6} z^{3} + 13644 x^{6} y^{5} z^{4} + 13644 x^{6} y^{4} z^{5} + 3228 x^{6} y^{3} z^{6} + 120 x^{6} y^{2} z^{7} + 1191 x^{5} y^{7} z^{3} + 13644 x^{5} y^{6} z^{4} + 28470 x^{5} y^{5} z^{5} + 13644 x^{5} y^{4} z^{6} + 1191 x^{5} y^{3} z^{7} + 2416 x^{4} y^{7} z^{4} + 13644 x^{4} y^{6} z^{5} + 13644 x^{4} y^{5} z^{6} + 2416 x^{4} y^{4} z^{7} + 1191 x^{3} y^{7} z^{5} + 3228 x^{3} y^{6} z^{6} + 1191 x^{3} y^{5} z^{7} + 120 x^{2} y^{7} z^{6} + 120 x^{2} y^{6} z^{7} + x y^{7} z^{7}\\ $

$ D8 = x^{8} y^{8} z + 247 x^{8} y^{7} z^{2} + 4293 x^{8} y^{6} z^{3} + 15619 x^{8} y^{5} z^{4} + 15619 x^{8} y^{4} z^{5} + 4293 x^{8} y^{3} z^{6} + 247 x^{8} y^{2} z^{7} + x^{8} y z^{8} + 247 x^{7} y^{8} z^{2} + 11364 x^{7} y^{7} z^{3} + 82281 x^{7} y^{6} z^{4} + 153352 x^{7} y^{5} z^{5} + 82281 x^{7} y^{4} z^{6} + 11364 x^{7} y^{3} z^{7} + 247 x^{7} y^{2} z^{8} + 4293 x^{6} y^{8} z^{3} + 82281 x^{6} y^{7} z^{4} + 306078 x^{6} y^{6} z^{5} + 306078 x^{6} y^{5} z^{6} + 82281 x^{6} y^{4} z^{7} + 4293 x^{6} y^{3} z^{8} + 15619 x^{5} y^{8} z^{4} + 153352 x^{5} y^{7} z^{5} + 306078 x^{5} y^{6} z^{6} + 153352 x^{5} y^{5} z^{7} + 15619 x^{5} y^{4} z^{8} + 15619 x^{4} y^{8} z^{5} + 82281 x^{4} y^{7} z^{6} + 82281 x^{4} y^{6} z^{7} + 15619 x^{4} y^{5} z^{8} + 4293 x^{3} y^{8} z^{6} + 11364 x^{3} y^{7} z^{7} + 4293 x^{3} y^{6} z^{8} + 247 x^{2} y^{8} z^{7} + 247 x^{2} y^{7} z^{8} + x y^{8} z^{8}\\ $

$ D9 = x^{9} y^{9} z + 502 x^{9} y^{8} z^{2} + 14608 x^{9} y^{7} z^{3} + 88234 x^{9} y^{6} z^{4} + 156190 x^{9} y^{5} z^{5} + 88234 x^{9} y^{4} z^{6} + 14608 x^{9} y^{3} z^{7} + 502 x^{9} y^{2} z^{8} + x^{9} y z^{9} + 502 x^{8} y^{9} z^{2} + 38044 x^{8} y^{8} z^{3} + 443016 x^{8} y^{7} z^{4} + 1385398 x^{8} y^{6} z^{5} + 1385398 x^{8} y^{5} z^{6} + 443016 x^{8} y^{4} z^{7} + 38044 x^{8} y^{3} z^{8} + 502 x^{8} y^{2} z^{9} + 14608 x^{7} y^{9} z^{3} + 443016 x^{7} y^{8} z^{4} + 2682324 x^{7} y^{7} z^{5} + 4746400 x^{7} y^{6} z^{6} + 2682324 x^{7} y^{5} z^{7} + 443016 x^{7} y^{4} z^{8} + 14608 x^{7} y^{3} z^{9} + 88234 x^{6} y^{9} z^{4} + 1385398 x^{6} y^{8} z^{5} + 4746400 x^{6} y^{7} z^{6} + 4746400 x^{6} y^{6} z^{7} + 1385398 x^{6} y^{5} z^{8} + 88234 x^{6} y^{4} z^{9} + 156190 x^{5} y^{9} z^{5} + 1385398 x^{5} y^{8} z^{6} + 2682324 x^{5} y^{7} z^{7} + 1385398 x^{5} y^{6} z^{8} + 156190 x^{5} y^{5} z^{9} + 88234 x^{4} y^{9} z^{6} + 443016 x^{4} y^{8} z^{7} + 443016 x^{4} y^{7} z^{8} + 88234 x^{4} y^{6} z^{9} + 14608 x^{3} y^{9} z^{7} + 38044 x^{3} y^{8} z^{8} + 14608 x^{3} y^{7} z^{9} + 502 x^{2} y^{9} z^{8} + 502 x^{2} y^{8} z^{9} + x y^{9} z^{9}\\ $

$ D10 = x^{10} y^{10} z + 1013 x^{10} y^{9} z^{2} + 47840 x^{10} y^{8} z^{3} + 455192 x^{10} y^{7} z^{4} + 1310354 x^{10} y^{6} z^{5} + 1310354 x^{10} y^{5} z^{6} + 455192 x^{10} y^{4} z^{7} + 47840 x^{10} y^{3} z^{8} + 1013 x^{10} y^{2} z^{9} + x^{10} y z^{10} + 1013 x^{9} y^{10} z^{2} + 123168 x^{9} y^{9} z^{3} + 2207888 x^{9} y^{8} z^{4} + 10822208 x^{9} y^{7} z^{5} + 18030486 x^{9} y^{6} z^{6} + 10822208 x^{9} y^{5} z^{7} + 2207888 x^{9} y^{4} z^{8} + 123168 x^{9} y^{3} z^{9} + 1013 x^{9} y^{2} z^{10} + 47840 x^{8} y^{10} z^{3} + 2207888 x^{8} y^{9} z^{4} + 20499876 x^{8} y^{8} z^{5} + 58337852 x^{8} y^{7} z^{6} + 58337852 x^{8} y^{6} z^{7} + 20499876 x^{8} y^{5} z^{8} + 2207888 x^{8} y^{4} z^{9} + 47840 x^{8} y^{3} z^{10} + 455192 x^{7} y^{10} z^{4} + 10822208 x^{7} y^{9} z^{5} + 58337852 x^{7} y^{8} z^{6} + 99674400 x^{7} y^{7} z^{7} + 58337852 x^{7} y^{6} z^{8} + 10822208 x^{7} y^{5} z^{9} + 455192 x^{7} y^{4} z^{10} + 1310354 x^{6} y^{10} z^{5} + 18030486 x^{6} y^{9} z^{6} + 58337852 x^{6} y^{8} z^{7} + 58337852 x^{6} y^{7} z^{8} + 18030486 x^{6} y^{6} z^{9} + 1310354 x^{6} y^{5} z^{10} + 1310354 x^{5} y^{10} z^{6} + 10822208 x^{5} y^{9} z^{7} + 20499876 x^{5} y^{8} z^{8} + 10822208 x^{5} y^{7} z^{9} + 1310354 x^{5} y^{6} z^{10} + 455192 x^{4} y^{10} z^{7} + 2207888 x^{4} y^{9} z^{8} + 2207888 x^{4} y^{8} z^{9} + 455192 x^{4} y^{7} z^{10} + 47840 x^{3} y^{10} z^{8} + 123168 x^{3} y^{9} z^{9} + 47840 x^{3} y^{8} z^{10} + 1013 x^{2} y^{10} z^{9} + 1013 x^{2} y^{9} z^{10} + x y^{10} z^{10}\\ $

Data

n numbers permutation asc des plat
2 1 [1, 2, 2, 1] 1 1 1
1 [1, 1, 2, 2] 1 0 2
1 [2, 2, 1, 1] 0 1 2
3 1 [1, 2, 3, 3, 2, 1] 2 2 1
4 [1, 2, 2, 3, 3, 1] 2 1 2
[1, 2, 2, 1, 3, 3]
[1, 3, 3, 1, 2, 2]
[1, 1, 2, 3, 3, 2]
1 [1, 1, 2, 2, 3, 3] 2 0 3
4 [2, 3, 3, 2, 1, 1] 1 2 2
[2, 2, 1, 3, 3, 1]
[3, 3, 1, 2, 2, 1]
[1, 3, 3, 2, 2, 1]
4 [2, 2, 3, 3, 1, 1] 1 1 3
[2, 2, 1, 1, 3, 3]
[3, 3, 1, 1, 2, 2]
[1, 1, 3, 3, 2, 2]
1 [3, 3, 2, 2, 1, 1] 0 2 3
4 1 [1, 2, 3, 4, 4, 3, 2, 1] 3 3 1
11 [1, 2, 3, 3, 4, 4, 2, 1] 3 2 2
[1, 2, 3, 3, 2, 4, 4, 1]
[1, 2, 3, 3, 2, 1, 4, 4]
[1, 2, 4, 4, 2, 3, 3, 1]
[1, 2, 2, 3, 4, 4, 3, 1]
[1, 2, 4, 4, 2, 1, 3, 3]
[1, 2, 2, 1, 3, 4, 4, 3]
[1, 3, 4, 4, 3, 1, 2, 2]
[1, 3, 3, 1, 2, 4, 4, 2]
[1, 4, 4, 1, 2, 3, 3, 2]
[1, 1, 2, 3, 4, 4, 3, 2]
11 [1, 2, 2, 3, 3, 4, 4, 1] 3 1 3
[1, 2, 2, 3, 3, 1, 4, 4]
[1, 2, 2, 4, 4, 1, 3, 3]
[1, 2, 2, 1, 3, 3, 4, 4]
[1, 3, 3, 4, 4, 1, 2, 2]
[1, 3, 3, 1, 2, 2, 4, 4]
[1, 1, 2, 3, 3, 4, 4, 2]
[1, 1, 2, 3, 3, 2, 4, 4]
[1, 4, 4, 1, 2, 2, 3, 3]
[1, 1, 2, 4, 4, 2, 3, 3]
[1, 1, 2, 2, 3, 4, 4, 3]
1 [1, 1, 2, 2, 3, 3, 4, 4] 3 0 4
11 [2, 3, 4, 4, 3, 2, 1, 1] 2 3 2
[2, 3, 3, 2, 1, 4, 4, 1]
[2, 4, 4, 2, 1, 3, 3, 1]
[2, 2, 1, 3, 4, 4, 3, 1]
[3, 4, 4, 3, 1, 2, 2, 1]
[3, 3, 1, 2, 4, 4, 2, 1]
[1, 3, 4, 4, 3, 2, 2, 1]
[1, 3, 3, 2, 4, 4, 2, 1]
[4, 4, 1, 2, 3, 3, 2, 1]
[1, 4, 4, 2, 3, 3, 2, 1]
[1, 2, 4, 4, 3, 3, 2, 1]
36 [2, 3, 3, 4, 4, 2, 1, 1] 2 2 3
[2, 3, 3, 2, 4, 4, 1, 1]
[2, 3, 3, 2, 1, 1, 4, 4]
[2, 4, 4, 2, 3, 3, 1, 1]
[2, 2, 3, 4, 4, 3, 1, 1]
[2, 2, 3, 3, 1, 4, 4, 1]
[2, 2, 4, 4, 1, 3, 3, 1]
[2, 2, 1, 3, 3, 4, 4, 1]
[2, 2, 1, 3, 3, 1, 4, 4]
[2, 4, 4, 2, 1, 1, 3, 3]
[2, 2, 1, 4, 4, 1, 3, 3]
[2, 2, 1, 1, 3, 4, 4, 3]
[3, 3, 4, 4, 1, 2, 2, 1]
[3, 3, 1, 2, 2, 4, 4, 1]
[3, 3, 1, 2, 2, 1, 4, 4]
[1, 3, 3, 4, 4, 2, 2, 1]
[1, 3, 3, 2, 2, 4, 4, 1]
[1, 3, 3, 2, 2, 1, 4, 4]
[4, 4, 1, 2, 2, 3, 3, 1]
[1, 4, 4, 2, 2, 3, 3, 1]
[1, 2, 2, 4, 4, 3, 3, 1]
[4, 4, 1, 2, 2, 1, 3, 3]
[1, 4, 4, 2, 2, 1, 3, 3]
[1, 2, 2, 1, 4, 4, 3, 3]
[3, 4, 4, 3, 1, 1, 2, 2]
[3, 3, 1, 4, 4, 1, 2, 2]
[3, 3, 1, 1, 2, 4, 4, 2]
[4, 4, 1, 3, 3, 1, 2, 2]
[1, 4, 4, 3, 3, 1, 2, 2]
[1, 3, 3, 1, 4, 4, 2, 2]
[1, 4, 4, 1, 3, 3, 2, 2]
[1, 1, 3, 4, 4, 3, 2, 2]
[1, 1, 3, 3, 2, 4, 4, 2]
[4, 4, 1, 1, 2, 3, 3, 2]
[1, 1, 4, 4, 2, 3, 3, 2]
[1, 1, 2, 4, 4, 3, 3, 2]
11 [2, 2, 3, 3, 4, 4, 1, 1] 2 1 4
[2, 2, 3, 3, 1, 1, 4, 4]
[2, 2, 4, 4, 1, 1, 3, 3]
[2, 2, 1, 1, 3, 3, 4, 4]
[3, 3, 4, 4, 1, 1, 2, 2]
[3, 3, 1, 1, 2, 2, 4, 4]
[1, 1, 3, 3, 4, 4, 2, 2]
[1, 1, 3, 3, 2, 2, 4, 4]
[4, 4, 1, 1, 2, 2, 3, 3]
[1, 1, 4, 4, 2, 2, 3, 3]
[1, 1, 2, 2, 4, 4, 3, 3]
11 [3, 4, 4, 3, 2, 2, 1, 1] 1 3 3
[3, 3, 2, 4, 4, 2, 1, 1]
[3, 3, 2, 2, 1, 4, 4, 1]
[4, 4, 2, 3, 3, 2, 1, 1]
[2, 4, 4, 3, 3, 2, 1, 1]
[4, 4, 2, 2, 1, 3, 3, 1]
[2, 2, 1, 4, 4, 3, 3, 1]
[4, 4, 3, 3, 1, 2, 2, 1]
[3, 3, 1, 4, 4, 2, 2, 1]
[4, 4, 1, 3, 3, 2, 2, 1]
[1, 4, 4, 3, 3, 2, 2, 1]
11 [3, 3, 4, 4, 2, 2, 1, 1] 1 2 4
[3, 3, 2, 2, 4, 4, 1, 1]
[3, 3, 2, 2, 1, 1, 4, 4]
[4, 4, 2, 2, 3, 3, 1, 1]
[2, 2, 4, 4, 3, 3, 1, 1]
[4, 4, 2, 2, 1, 1, 3, 3]
[2, 2, 1, 1, 4, 4, 3, 3]
[4, 4, 3, 3, 1, 1, 2, 2]
[3, 3, 1, 1, 4, 4, 2, 2]
[4, 4, 1, 1, 3, 3, 2, 2]
[1, 1, 4, 4, 3, 3, 2, 2]
1 [4, 4, 3, 3, 2, 2, 1, 1] 0 3 4