Stirling-ap_lap

Stirling Permutation, ap, lap 統計量 (back to Data page)

定義:


The statistic of [ap, lap] for $\mathcal{S}_{ \{1, 1, 2, 2, ...., n, n\} }$ in link

google colab

目錄:


$ap(\pi)$, for $\pi \in \mathcal{Q}_n$

For $Ap_n(x)=\sum^n_{i=0}a_{n,i}x^i$, where $a_{n,i}$ is the number of $\pi \in \mathcal{S}_{ \{1, 1, 2, 2, ...., n, n\} }$ such that $ap(\pi)=i$.
$Ap_1(x)= 1 $,
$Ap_2(x)= 1 + 2 x$,
$Ap_3(x)= 1 + 10 x+ 4 x^2$,
$Ap_4(x)= 1 + 36 x+ 60 x^2+ 8 x^3$,
$Ap_5(x)= 1 + 116 x+ 516 x^2+ 296 x^3+ 16 x^4$,
$Ap_6(x)= 1 + 358 x+ 3508 x^2+ 5168 x^3+ 1328 x^4 + 32 x^5$,
$Ap_7(x)= 1 + 1086 x+ 21120 x^2+ 64240 x^3+ 42960 x^4 + 5664 x^5+ 64 x^6$,
$Ap_8(x)= 1 + 3272 x+ 118632 x^2+ 660880 x^3+ 900560 x^4 + 320064 x^5+ 23488 x^6+ 128 x^7$,
$Ap_8(x)= 1 + 9832 x+ 638968 x^2+ 6049744 x^3+ 14713840 x^4 + 10725184 x^5+ 2225728 x^6+ 95872 x^7+ 256 x^8$,

n total $ap(\pi)$ numbers
1 1 1 0
2 3 1 0
2 1
3 15 1 0
10 1
4 2
4 105 1 0
36 1
60 2
8 3
5 945 1 0
116 1
516 2
296 3
16 4
6 10395 1 0
358 1
3508 2
5168 3
1328 4
32 5
7 135135 1 0
1086 1
21120 2
64240 3
42960 4
5664 5
64 6
8 2027025 1 0
3272 1
118632 2
660880 3
900560 4
320064 5
23488 6
128 7
9 34459425 1 0
9832 1
638968 2
6049744 3
14713840 4
10725184 5
2225728 6
95872 7
256 8

( $ap(\pi),lap(\pi)$ ), for $\pi \in \mathcal{Q}_n$

n total numbers $ap(\pi)$ $lap(\pi)$
1 1 1 0 1
2 3 1 1 2
1 1 1
1 0 1
3 15 1 2 3
3 2 2
7 1 2
3 1 1
1 0 1
4 105 1 3 4
7 3 3
29 2 3
31 2 2
29 1 2
7 1 1
1 0 1
5 945 1 4 5
15 4 4
101 3 4
195 3 3
321 2 3
195 2 2
101 1 2
15 1 1
1 0 1
6 10395 1 5 6
31 5 5
327 4 5
1001 4 4
2507 3 4
2661 3 3
2507 2 3
1001 2 2
327 1 2
31 1 1
1 0 1
7 135135 1 6 7
63 6 6
1023 5 6
4641 5 5
16479 4 5
26481 4 4
37759 3 4
26481 3 3
16479 2 3
4641 2 2
1023 1 2
63 1 1
1 0 1
8 2027025 1 7 8
127 7 7
3145 6 7
20343 6 6
98289 5 6
221775 5 5
439105 4 5
461455 4 4
439105 3 4
221775 3 3
98289 2 3
20343 2 2
3145 1 2
127 1 1
1 0 1