(a) Find the inverse of the square matrix, if it exists, and
(b) express each invertible matrix as a product of elementary matrices.
$$\begin{bmatrix}
2& 1& 4\\
3& 2& 5\\
0&-1& 1\\
\end{bmatrix}$$
求此矩陣的 row-echelor form, reduced row-echelor form.
注意一下,octave只能幫你算inverse matrix而已,b小題你還是要自己手算的。
inv( [2, 1, 4;3, 2, 5;0, -1, 1] )
輸出結果
ans =
-7 5 3
3 -2 -2
3 -2 -1
ans得到的就是the inverse matrix。
Using the inverse of the matrix in Exercise 7, find the solution of the system of equations.
$$
\begin{array}{r}
2x_1+x_2+4x_3=5\\
3x_1+2x_2+5x_3=3\\
-x_2+x_3=8
\end{array}$$
輸入
A = [2, 1, 4;3, 2, 5;0, -1, 1]
b = [5; 3; 8]
inv( A ) * b
輸出結果
A =
2 1 4
3 2 5
0 -1 1
b =
5
3
8
ans =
4
-7
1
由此$x_1=4, x_2 =-7, x_3=1$。