Ch 6-5 Diagonalization 在看習題解答前,建議先觀看Ch6的教學 範例目錄:


example 1, 一次式 Find the least-squares fit the data points in Problem 1 by a straight line -- that is, by a linear function $y=r_0+r_1x$.
$a_i$ = weight in ouces 2.0 4.0 5.0 6.0
$b_i$ = Length in inches 6.5 8.5 11.0 12.5
輸入
            
                A = [1 2;1 4; 1 5;1 6]
                a = [2; 4; 5; 6]
                b = [6.5; 8.5; 11.0; 12.5]

                r = inv( A' * A ) * A' * b

                plot(a, b, "bo")
                hold on
                x = [ a(1) - 0.1 : 0.01 : a( length(a) ) + 0.1 ];
                y = r(1) + r(2) * x;
                plot(x, y, "b")
                hold off
            
        
輸出結果
            
                A =

                    1   2
                    1   4
                    1   5
                    1   6

                a =

                    2
                    4
                    5
                    6

                b =

                    6.5000
                    8.5000
                    11.0000
                    12.5000

                r =

                    3.1286
                    1.5286
            
        
並還有圖
圖

example 2, 指數式 Use the method of least-squares to fit the data points in Problem 3 by an exponentialfunction $y=f(x)=re^{sx}$.
$a_i$ = Weight in tons 1.0 2.0 3.0 4.0
$b_i$ = Price in units of \$ 10000 3 4.5 8 17
輸入
            
                A = [1 1;1 2; 1 3;1 4]
                a = [1; 2; 3; 4]
                b = [3; 4.5; 8; 17]

                b1 = log( b )

                r = inv( A' * A ) * A' * b1

                plot(a, b, "bo")
                hold on
                x = [ a(1) - 0.1 : 0.01 : a( length(a) ) + 0.1 ];
                y = exp( r(1) ) * exp( r(2) * x );
                plot(x, y, "b")
                hold off
            
        
輸出結果
            
                A =

                    1   1
                    1   2
                    1   3
                    1   4

                a =

                    1
                    2
                    3
                    4

                b =

                    3.0000
                    4.5000
                    8.0000
                    17.0000

                b1 =

                    1.0986
                    1.5041
                    2.0794
                    2.8332

                r =

                    0.4340
                    0.5779
            
        
並還有圖
圖

example 3, 二次式 Use a computer to find the least-squares fit the data points in Problem 2 by a parabola -- that is, by a quadratic function $y=r_0+r_1x+r_2x^2$.
$a_i$ = (Year observed) - 1990 2.0 4.0 5.0 8.0
$b_i$ = Number of rabbits in units of 1000 1 3 5 12
輸入
            
                a = [2; 4; 5; 8]
                b = [1; 3; 5; 12]
                A = [ones(4,1), a, a.^2]

                r = inv( A' * A ) * A' * b

                plot(a, b, "bo")
                hold on
                x = [ a(1) - 0.1 : 0.01 : a( length(a) ) + 0.1 ];
                y = r(1) + r(2) * x + r(3) * x .^ 2;
                plot(x, y, "b")
                hold off
            
        
輸出結果
            
                a =

                    2
                    4
                    5
                    8

                b =

                    1
                    3
                    5
                    12

                A =

                    1    2    4
                    1    4   16
                    1    5   25
                    1    8   64

                r =

                    2.0667e-01
                    1.0000e-02
                    1.8333e-01
            
        
並還有圖
圖